These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28952715)

  • 21. Backbone relaxation coupled to the ionization of internal groups in proteins: a self-guided Langevin dynamics study.
    Damjanović A; Wu X; García-Moreno E B; Brooks BR
    Biophys J; 2008 Nov; 95(9):4091-101. PubMed ID: 18641078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of pK
    Wu X; Lee J; Brooks BR
    J Phys Chem B; 2017 Apr; 121(15):3318-3330. PubMed ID: 27700118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core.
    Stites WE; Gittis AG; Lattman EE; Shortle D
    J Mol Biol; 1991 Sep; 221(1):7-14. PubMed ID: 1920420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pKa predictions with a coupled finite difference Poisson-Boltzmann and Debye-Hückel method.
    Warwicker J
    Proteins; 2011 Dec; 79(12):3374-80. PubMed ID: 21661058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High tolerance for ionizable residues in the hydrophobic interior of proteins.
    Isom DG; Cannon BR; Castañeda CA; Robinson A; García-Moreno B
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17784-8. PubMed ID: 19004768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein electrostatics and pKa blind predictions; contribution from empirical predictions of internal ionizable residues.
    Olsson MH
    Proteins; 2011 Dec; 79(12):3333-45. PubMed ID: 22072518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pK(a) values of acidic and basic residues buried at the same internal location in a protein are governed by different factors.
    Harms MJ; Castañeda CA; Schlessman JL; Sue GR; Isom DG; Cannon BR; García-Moreno E B
    J Mol Biol; 2009 May; 389(1):34-47. PubMed ID: 19324049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calculation of pK(a) in proteins with the microenvironment modulated-screened coulomb potential.
    Shan J; Mehler EL
    Proteins; 2011 Dec; 79(12):3346-55. PubMed ID: 21748803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydronium Ions Accompanying Buried Acidic Residues Lead to High Apparent Dielectric Constants in the Interior of Proteins.
    Wu X; Brooks BR
    J Phys Chem B; 2018 Jun; 122(23):6215-6223. PubMed ID: 29771522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic mechanisms that govern the titration response and pK
    Zheng Y; Cui Q
    Proteins; 2017 Feb; 85(2):268-281. PubMed ID: 27862310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease.
    Shan L; Tong Y; Xie T; Wang M; Wang J
    Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting extreme pKa shifts in staphylococcal nuclease mutants with constant pH molecular dynamics.
    Arthur EJ; Yesselman JD; Brooks CL
    Proteins; 2011 Dec; 79(12):3276-86. PubMed ID: 22002886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH dependence of conformational fluctuations of the protein backbone.
    Richman DE; Majumdar A; García-Moreno E B
    Proteins; 2014 Nov; 82(11):3132-43. PubMed ID: 25137073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH.
    Kitahara R; Hata K; Maeno A; Akasaka K; Chimenti MS; Garcia-Moreno E B; Schroer MA; Jeworrek C; Tolan M; Winter R; Roche J; Roumestand C; Montet de Guillen K; Royer CA
    Proteins; 2011 Apr; 79(4):1293-305. PubMed ID: 21254234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The high dielectric constant of staphylococcal nuclease is encoded in its structural architecture.
    Goh GB; García-Moreno E B; Brooks CL
    J Am Chem Soc; 2011 Dec; 133(50):20072-5. PubMed ID: 22085022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.