These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28952750)

  • 1. Quantum Dot Self-Assembly Driven by a Surfactant-Induced Morphological Instability.
    Lewis RB; Corfdir P; Li H; Herranz J; Pfüller C; Brandt O; Geelhaar L
    Phys Rev Lett; 2017 Aug; 119(8):086101. PubMed ID: 28952750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant.
    Lewis RB; Corfdir P; Herranz J; Küpers H; Jahn U; Brandt O; Geelhaar L
    Nano Lett; 2017 Jul; 17(7):4255-4260. PubMed ID: 28654278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy.
    Xiang R; Lung MT; Lam CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021601. PubMed ID: 20866820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling of In(Ga)As/GaAs quantum dots on (N11) substrates: the (311)A case.
    Sanguinetti S; Chiantoni G; Miotto A; Grilli E; Guzzi M; Henini M; Polimeni A; Patane A; Eaves L; Main PC
    Micron; 2000 Jun; 31(3):309-13. PubMed ID: 10702981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots.
    Kim DJ; Yang H
    Nanotechnology; 2008 Nov; 19(47):475601. PubMed ID: 21836276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of three-dimensional islands in subcritical layer deposition in Stranski-Krastanow growth.
    Shchukin V; Ledentsov N; Rouvimov S
    Phys Rev Lett; 2013 Apr; 110(17):176101. PubMed ID: 23679747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness.
    Schuck CF; Roy SK; Garrett T; Yuan Q; Wang Y; Cabrera CI; Grossklaus KA; Vandervelde TE; Liang B; Simmonds PJ
    Sci Rep; 2019 Dec; 9(1):18179. PubMed ID: 31796804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave.
    Walther T
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on Sb distribution for InSb/InAs sub-monolayer heterostructure using TEM techniques.
    Khan AA; Herrera M; Fernández-Delgado N; Reyes DF; Pizarro J; Repiso E; Krier A; Molina SI
    Nanotechnology; 2020 Jan; 31(2):025706. PubMed ID: 31550683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Implementation of GaAsBi Alloys as Strain-Reducing Layers in InAs/GaAs Quantum Dots.
    Braza V; Fernández D; Ben T; Flores S; Bailey NJ; Carr M; Richards R; Gonzalez D
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.
    Robin IC; Aichele T; Bougerol C; André R; Tatarenko S; Bellet-Amalric E; Van Daele B; Van Tendeloo G
    Nanotechnology; 2007 Jul; 18(26):265701. PubMed ID: 21730405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy.
    Sales DL; Varela M; Pennycook SJ; Galindo PL; González L; González Y; Fuster D; Molina SI
    Nanotechnology; 2010 Aug; 21(32):325706. PubMed ID: 20647625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low density InAs/(In)GaAs quantum dots emitting at long wavelengths.
    Trevisi G; Seravalli L; Frigeri P; Franchi S
    Nanotechnology; 2009 Oct; 20(41):415607. PubMed ID: 19762951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Islands on Spherical Substrates by Surface Instability.
    Liao X; Xiao J; Ni Y; Li C; Chen X
    ACS Nano; 2017 Mar; 11(3):2611-2617. PubMed ID: 28273417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski-Krastanov quantum dots.
    Gajjela RSR; Hendriks AL; Douglas JO; Sala EM; Steindl P; Klenovský P; Bagot PAJ; Moody MP; Bimberg D; Koenraad PM
    Light Sci Appl; 2021 Jun; 10(1):125. PubMed ID: 34127643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of apparent critical thickness for island formation in heteroepitaxy.
    Tu Y; Tersoff J
    Phys Rev Lett; 2004 Nov; 93(21):216101. PubMed ID: 15601033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy.
    Gamage CG; Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022408. PubMed ID: 23496527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-controlled self-assembled InAs quantum dots grown on GaAs substrates.
    Lin SY; Tseng CC; Chung TH; Liao WH; Chen SH; Chyi JI
    Nanotechnology; 2010 Jul; 21(29):295304. PubMed ID: 20601753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.