These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28952753)

  • 1. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature.
    Patel ND; Mukherjee A; Kaushal N; Moreo A; Dagotto E
    Phys Rev Lett; 2017 Aug; 119(8):086601. PubMed ID: 28952753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frustration effects at finite temperature in the half filled Hubbard model.
    Jana G; Mukherjee A
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32369786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bad-Metal Behavior Reveals Mott Quantum Criticality in Doped Hubbard Models.
    Vučičević J; Tanasković D; Rozenberg MJ; Dobrosavljević V
    Phys Rev Lett; 2015 Jun; 114(24):246402. PubMed ID: 26196992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Fermi-liquid behavior in the periodic anderson model.
    Amaricci A; Sordi G; Rozenberg MJ
    Phys Rev Lett; 2008 Oct; 101(14):146403. PubMed ID: 18851550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-fermi-liquid behavior of electron-spin fluctuations in an elemental paramagnet.
    Stewart JR; Rainford BD; Eccleston RS; Cywinski R
    Phys Rev Lett; 2002 Oct; 89(18):186403. PubMed ID: 12398623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-insulator transitions in the half-filled ionic Hubbard model.
    Hoang AT
    J Phys Condens Matter; 2010 Mar; 22(9):095602. PubMed ID: 21389421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable resistivity exponents in the metallic phase of epitaxial nickelates.
    Guo Q; Farokhipoor S; Magén C; Rivadulla F; Noheda B
    Nat Commun; 2020 Jun; 11(1):2949. PubMed ID: 32527995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study.
    Vidhyadhiraja NS; Macridin A; Sen C; Jarrell M; Ma M
    Phys Rev Lett; 2009 May; 102(20):206407. PubMed ID: 19519050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure induced quantum critical point and non-fermi-liquid behavior in BaVS3.
    Forro L; Gaal R; Berger H; Fazekas P; Penc K; Kezsmarki I; Mihaly G
    Phys Rev Lett; 2000 Aug; 85(9):1938-41. PubMed ID: 10970652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interchain-frustration-induced metallic state in quasi-one-dimensional Mott insulators.
    Tsuchiizu M; Suzumura Y; Bourbonnais C
    Phys Rev Lett; 2007 Sep; 99(12):126404. PubMed ID: 17930530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hole localization in the one-dimensional doped Anderson-Hubbard model.
    Okumura M; Yamada S; Taniguchi N; Machida M
    Phys Rev Lett; 2008 Jul; 101(1):016407. PubMed ID: 18764134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum critical transport near the Mott transition.
    Terletska H; Vučičević J; Tanasković D; Dobrosavljević V
    Phys Rev Lett; 2011 Jul; 107(2):026401. PubMed ID: 21797625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserving many body approach to the infinite-U Anderson model.
    Lebanon E; Rech J; Coleman P; Parcollet O
    Phys Rev Lett; 2006 Sep; 97(10):106604. PubMed ID: 17025838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Fermi-liquid behavior and double-exchange physics in orbital-selective Mott systems.
    Biermann S; de' Medici L; Georges A
    Phys Rev Lett; 2005 Nov; 95(20):206401. PubMed ID: 16384076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological mott insulator in three-dimensional systems with quadratic band touching.
    Herbut IF; Janssen L
    Phys Rev Lett; 2014 Sep; 113(10):106401. PubMed ID: 25238373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconductor-Insulator Transition in a Non-Fermi Liquid.
    Chudnovskiy AL; Kamenev A
    Phys Rev Lett; 2022 Dec; 129(26):266601. PubMed ID: 36608205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mott Quantum Criticality in the Anisotropic 2D Hubbard Model.
    Lenz B; Manmana SR; Pruschke T; Assaad FF; Raczkowski M
    Phys Rev Lett; 2016 Feb; 116(8):086403. PubMed ID: 26967431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model.
    Šimkovic F; LeBlanc JPF; Kim AJ; Deng Y; Prokof'ev NV; Svistunov BV; Kozik E
    Phys Rev Lett; 2020 Jan; 124(1):017003. PubMed ID: 31976700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.