These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28952771)

  • 1. BCS Theory of Time-Reversal-Symmetric Hofstadter-Hubbard Model.
    Umucalılar RO; Iskin M
    Phys Rev Lett; 2017 Aug; 119(8):085301. PubMed ID: 28952771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pairing and vortex lattices for interacting fermions in optical lattices with a large magnetic field.
    Zhai H; Umucalilar RO; Oktel MO
    Phys Rev Lett; 2010 Apr; 104(14):145301. PubMed ID: 20481943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
    Aidelsburger M; Atala M; Lohse M; Barreiro JT; Paredes B; Bloch I
    Phys Rev Lett; 2013 Nov; 111(18):185301. PubMed ID: 24237530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapped Fermi gases in rotating optical lattices: realization and detection of the topological hofstadter insulator.
    Umucalilar RO; Zhai H; Oktel MO
    Phys Rev Lett; 2008 Feb; 100(7):070402. PubMed ID: 18352527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice.
    Chen QH; Li P; Su H
    J Phys Condens Matter; 2016 Jun; 28(25):256001. PubMed ID: 27165440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight-binding electrons on triangular and kagomé lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies.
    Li J; Wang YF; Gong CD
    J Phys Condens Matter; 2011 Apr; 23(15):156002. PubMed ID: 21460430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological Mott insulators.
    Raghu S; Qi XL; Honerkamp C; Zhang SC
    Phys Rev Lett; 2008 Apr; 100(15):156401. PubMed ID: 18518132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetothermoelectric response at a superfluid-Mott-insulator transition.
    Bhaseen MJ; Green AG; Sondhi SL
    Phys Rev Lett; 2007 Apr; 98(16):166801. PubMed ID: 17501445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting Hofstadter spectrum of atoms in an artificial gauge field.
    Powell S; Barnett R; Sensarma R; Das Sarma S
    Phys Rev Lett; 2010 Jun; 104(25):255303. PubMed ID: 20867393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic analogue of Josephson effect in a dual-species optical-lattice cavity.
    Lei SC; Ng TK; Lee RK
    Opt Express; 2010 Jul; 18(14):14586-97. PubMed ID: 20639944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-reversal-invariant Hofstadter-Hubbard model with ultracold fermions.
    Cocks D; Orth PP; Rachel S; Buchhold M; Le Hur K; Hofstetter W
    Phys Rev Lett; 2012 Nov; 109(20):205303. PubMed ID: 23215500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polaritons and pairing phenomena in Bose-Hubbard mixtures.
    Bhaseen MJ; Hohenadler M; Silver AO; Simons BD
    Phys Rev Lett; 2009 Apr; 102(13):135301. PubMed ID: 19392365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staggered-vortex superfluid of ultracold bosons in an optical lattice.
    Lim LK; Smith CM; Hemmerich A
    Phys Rev Lett; 2008 Apr; 100(13):130402. PubMed ID: 18517921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions of the Kane-Mele-Hubbard model with a long-range hopping.
    Du T; Li YX; Lu HL; Zhang H
    J Phys Condens Matter; 2018 Nov; 30(47):475601. PubMed ID: 30378568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and entanglement properties of the bosonic Haldane insulator.
    Ejima S; Lange F; Fehske H
    Phys Rev Lett; 2014 Jul; 113(2):020401. PubMed ID: 25062142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.