These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28952931)

  • 1. Euler Elastica Regularized Logistic Regression for Whole-Brain Decoding of fMRI Data.
    Zhang C; Yao L; Song S; Wen X; Zhao X; Long Z
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1639-1653. PubMed ID: 28952931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding negative affect personality trait from patterns of brain activation to threat stimuli.
    Fernandes O; Portugal LCL; Alves RCS; Arruda-Sanchez T; Rao A; Volchan E; Pereira M; Oliveira L; Mourao-Miranda J
    Neuroimage; 2017 Jan; 145(Pt B):337-345. PubMed ID: 26767946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications.
    Zhang J; Zhang C; Yao L; Zhao X; Long Z
    Comput Intell Neurosci; 2018; 2018():3956536. PubMed ID: 29849545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical comparison of different LDA methods in fMRI-based brain states decoding.
    Xia M; Song S; Yao L; Long Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1185-92. PubMed ID: 26405876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
    Long Z; Wang Y; Liu X; Yao L
    PLoS One; 2019; 14(4):e0214937. PubMed ID: 30970029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total variation regularization for fMRI-based prediction of behavior.
    Michel V; Gramfort A; Varoquaux G; Eger E; Thirion B
    IEEE Trans Med Imaging; 2011 Jul; 30(7):1328-40. PubMed ID: 21317080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
    Chaimow D; Uğurbil K; Shmuel A
    Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Euler's elastica and curvature based model for image restoration.
    Khan MA; Chen W; Ullah A; Ji L
    PLoS One; 2018; 13(9):e0202464. PubMed ID: 30231071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint sparse representation of brain activity patterns in multi-task fMRI data.
    Ramezani M; Marble K; Trang H; Johnsrude IS; Abolmaesumi P
    IEEE Trans Med Imaging; 2015 Jan; 34(1):2-12. PubMed ID: 25073167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian reconstruction of multiscale local contrast images from brain activity.
    Song S; Ma X; Zhan Y; Zhan Z; Yao L; Zhang J
    J Neurosci Methods; 2013 Oct; 220(1):39-45. PubMed ID: 23999175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correntropy-Based Logistic Regression With Automatic Relevance Determination for Robust Sparse Brain Activity Decoding.
    Li Y; Chen B; Shi Y; Yoshimura N; Koike Y
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2416-2429. PubMed ID: 37093731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution.
    Yoo PE; John SE; Farquharson S; Cleary JO; Wong YT; Ng A; Mulcahy CB; Grayden DB; Ordidge RJ; Opie NL; O'Brien TJ; Oxley TJ; Moffat BA
    Neuroimage; 2018 Jan; 164():214-229. PubMed ID: 28286317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data.
    Wen Z; Yu T; Yu Z; Li Y
    Neuroimage; 2019 Jan; 184():417-430. PubMed ID: 30240902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.