These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28953363)

  • 1. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.
    Benaglia S; Gisbert VG; Perrino AP; Amo CA; Garcia R
    Nat Protoc; 2018 Dec; 13(12):2890-2907. PubMed ID: 30446750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy of red-light photoreceptors using peakforce quantitative nanomechanical property mapping.
    Kroeger ME; Sorenson BA; Thomas JS; Stojković EA; Tsonchev S; Nicholson KT
    J Vis Exp; 2014 Oct; (92):e52164. PubMed ID: 25407118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy.
    Huda Shaik N; G Reifenberger R; Raman A
    Nanotechnology; 2020 Nov; 31(45):455502. PubMed ID: 32413884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of temperature induced mechanical changes in supported bilayers by variants of tapping mode atomic force microscopy.
    Shamitko-Klingensmith N; Legleiter J
    Scanning; 2015; 37(1):23-35. PubMed ID: 25369473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Visualization of the Nanomechanical Young's Modulus of Soft Materials by Atomic Force Microscopy.
    Kim S; Lee Y; Lee M; An S; Cho SJ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of phase contrast in bimodal amplitude modulation AFM.
    Damircheli M; Payam AF; Garcia R
    Beilstein J Nanotechnol; 2015; 6():1072-81. PubMed ID: 26114079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.
    Schuh A; Bozchalooi IS; Rangelow IW; Youcef-Toumi K
    Nanotechnology; 2015 Jun; 26(23):235706. PubMed ID: 25994333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing material properties of polymeric surface layers with tapping mode AFM: which cantilever spring constant, tapping amplitude and amplitude set point gives good image contrast and minimal surface damage?
    Thormann E; Pettersson T; Kettle J; Claesson PM
    Ultramicroscopy; 2010 Mar; 110(4):313-9. PubMed ID: 20133064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad modulus range nanomechanical mapping by magnetic-drive soft probes.
    Meng X; Zhang H; Song J; Fan X; Sun L; Xie H
    Nat Commun; 2017 Dec; 8(1):1944. PubMed ID: 29208894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy.
    Gisbert VG; Garcia R
    ACS Nano; 2021 Dec; 15(12):20574-20581. PubMed ID: 34851086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Radial Elasticity and Original Height of DNA Duplex Using Tapping-Mode Atomic Force Microscopy.
    Li L; Zhang X; Wang H; Lang Q; Chen H; Liu LQ
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
    Deng W; Zhang GM; Murphy MF; Lilley F; Harvey DM; Burton DR
    Microsc Res Tech; 2015 Oct; 78(10):935-46. PubMed ID: 26303510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.