These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 28953387)

  • 1. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication.
    Huang X; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2021 Mar; 143(11):4234-4243. PubMed ID: 33687203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals.
    Huang X; Suit E; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2023 Mar; 145(8):4500-4507. PubMed ID: 36787491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.
    Bian K; Wang Z; Hanrath T
    J Am Chem Soc; 2012 Jul; 134(26):10787-90. PubMed ID: 22702237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly.
    Huang X; Wang Z
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31744175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces.
    Li R; Bian K; Hanrath T; Bassett WA; Wang Z
    J Am Chem Soc; 2014 Aug; 136(34):12047-55. PubMed ID: 25100031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-driven symmetry of self-assembled nanocrystal superlattices--a computational study.
    Kaushik AP; Clancy P
    J Comput Chem; 2013 Mar; 34(7):523-32. PubMed ID: 23109263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal nanocrystal superlattice nucleation and growth.
    Sigman MB; Saunders AE; Korgel BA
    Langmuir; 2004 Feb; 20(3):978-83. PubMed ID: 15773133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating superlattice polymorphs to internanoparticle distance, packing density, and surface lattice in assemblies of PbS nanoparticles.
    Wang Z; Schliehe C; Bian K; Dale D; Bassett WA; Hanrath T; Klinke C; Weller H
    Nano Lett; 2013 Mar; 13(3):1303-11. PubMed ID: 23394611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice.
    Li R; Zhang J; Tan R; Gerdes F; Luo Z; Xu H; Hollingsworth JA; Klinke C; Chen O; Wang Z
    Nano Lett; 2016 Apr; 16(4):2792-9. PubMed ID: 26977777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon Nanocrystal Superlattice Nucleation and Growth.
    Guillaussier A; Yu Y; Voggu VR; Aigner W; Cabezas CS; Houck DW; Shah T; Smilgies DM; Pereira RN; Stutzmann M; Korgel BA
    Langmuir; 2017 Nov; 33(45):13068-13076. PubMed ID: 29058436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.
    Maiti S; André A; Banerjee R; Hagenlocher J; Konovalov O; Schreiber F; Scheele M
    J Phys Chem Lett; 2018 Feb; 9(4):739-744. PubMed ID: 29365268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.