These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28953388)

  • 21. Iron(II) Mediated Desulfurization of Organosulfur Substrates Produces Nonheme Diiron(II)-hydrosulfides.
    Ganguly T; Das A; Majumdar A
    Inorg Chem; 2019 Aug; 58(15):9998-10011. PubMed ID: 31310510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What Is the Right Level of Activation of a High-Spin {FeNO}
    Dong HT; Camarena S; Sil D; Lengel MO; Zhao J; Hu MY; Alp EE; Krebs C; Lehnert N
    J Am Chem Soc; 2022 Sep; 144(36):16395-16409. PubMed ID: 36040133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reductive Transformations of a Pyrazolate-Based Bioinspired Diiron-Dinitrosyl Complex.
    Kindermann N; Schober A; Demeshko S; Lehnert N; Meyer F
    Inorg Chem; 2016 Nov; 55(21):11538-11550. PubMed ID: 27788000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-S Bond Cleavage, Redox Reactions, and Dioxygen Activation by Nonheme Dicobalt(II) Complexes.
    Jana M; Majumdar A
    Inorg Chem; 2018 Jan; 57(2):617-632. PubMed ID: 29271646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can Reduction of NO to N
    Blomberg MR
    Biochemistry; 2017 Jan; 56(1):120-131. PubMed ID: 27959492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
    Sabuncu S; Reed JH; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2018 Dec; 140(50):17389-17393. PubMed ID: 30512937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies.
    Chakraborty S; Reed J; Sage JT; Branagan NC; Petrik ID; Miner KD; Hu MY; Zhao J; Alp EE; Lu Y
    Inorg Chem; 2015 Oct; 54(19):9317-29. PubMed ID: 26274098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases.
    Shiro Y; Sugimoto H; Tosha T; Nagano S; Hino T
    Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1195-203. PubMed ID: 22451105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity and complexity of flavodiiron NO/O2 reductases.
    Folgosa F; Martins MC; Teixeira M
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29240952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-induced N₂O production from a non-heme iron-nitrosyl dimer.
    Jiang Y; Hayashi T; Matsumura H; Do LH; Majumdar A; Lippard SJ; Moënne-Loccoz P
    J Am Chem Soc; 2014 Sep; 136(36):12524-7. PubMed ID: 25158917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NO, N2O, and O2 reaction kinetics: scope and limitations of the Clark electrode.
    Pouvreau LA; Strampraad MJ; Van Berloo S; Kattenberg JH; de Vries S
    Methods Enzymol; 2008; 436():97-112. PubMed ID: 18237629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site.
    Chen P; Gorelsky SI; Ghosh S; Solomon EI
    Angew Chem Int Ed Engl; 2004 Aug; 43(32):4132-40. PubMed ID: 15307074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27.
    Park D; Kim H; Yoon S
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Algal photosynthesis converts nitric oxide into nitrous oxide.
    Burlacot A; Richaud P; Gosset A; Li-Beisson Y; Peltier G
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2704-2709. PubMed ID: 31941711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A diferrous-dinitrosyl intermediate in the N2O-generating pathway of a deflavinated flavo-diiron protein.
    Caranto JD; Weitz A; Giri N; Hendrich MP; Kurtz DM
    Biochemistry; 2014 Sep; 53(35):5631-7. PubMed ID: 25144650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.
    Perez-Garcia O; Chandran K; Villas-Boas SG; Singhal N
    Biotechnol Bioeng; 2016 May; 113(5):1124-36. PubMed ID: 26551878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O.
    Yang H; Gandhi H; Ostrom NE; Hegg EL
    Environ Sci Technol; 2014 Sep; 48(18):10707-15. PubMed ID: 25121461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring second coordination sphere effects in flavodiiron nitric oxide reductase model complexes.
    Bracken AJ; Dong HT; Lengel MO; Lehnert N
    Dalton Trans; 2023 Nov; 52(46):17360-17374. PubMed ID: 37938109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.