These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28953484)

  • 1. Erratum: Water Science and Technology 75 (10), 2257-2267: Liquid-gas mass transfer at drop structures, Natércia Matias, Asbjørn Haaning Nielsen, Jes Vollertsen, Filipa Ferreira and José Saldanha Matos, doi: 10.2166/wst.2017.103.
    Matias N; Nielsen AH; Vollertsen J; Ferreira F; Matos JS
    Water Sci Technol; 2017 Sep; 76(5-6):1584-1594. PubMed ID: 28953484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-gas mass transfer at drop structures.
    Matias N; Nielsen AH; Vollertsen J; Ferreira F; Matos JS
    Water Sci Technol; 2017 May; 75(10):2257-2267. PubMed ID: 28541933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulfide gas emission under turbulent conditions - an experimental approach for free-fall drops.
    Matias NM; Matos JS; Ferreira F
    Water Sci Technol; 2014; 69(2):262-8. PubMed ID: 24473293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2017 Apr; 75(7-8):1529-1538. PubMed ID: 28402293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.
    Yongsiri C; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2004; 50(4):161-8. PubMed ID: 15484757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modelling of air-water flows in sewer drops.
    Beceiro P; Almeida MDC; Matos J
    Water Sci Technol; 2017 Jul; 76(3-4):642-652. PubMed ID: 28759446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing the emission process of hydrogen sulfide to a sewer process model (WATS).
    Yongsiri C; Hvitved-Jacobsen T; Vollertsen J; Tanaka N
    Water Sci Technol; 2003; 47(4):85-92. PubMed ID: 12666805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaeration in sewers.
    Huisman JL; Weber N; Gujer W
    Water Res; 2004 Mar; 38(5):1089-100. PubMed ID: 14975641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-Gas Mass Transfer of Volatile Substances in an Energy Dissipating Structure.
    Matias N; Ferreira F; Matos JS; Nielsen AH; Vollertsen J
    Water Environ Res; 2018 Mar; 90(3):269-277. PubMed ID: 29521622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of hydrogen sulfide under intermittent flow conditions - the potential of simulation models.
    Matias N; Matos R; Ferreira F; Vollertsen J; Matos JS
    Water Sci Technol; 2018 Feb; 77(3-4):777-787. PubMed ID: 29431723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A different approach for predicting H(2)S((g)) emission rates in gravity sewers.
    Lahav O; Sagiv A; Friedler E
    Water Res; 2006 Jan; 40(2):259-66. PubMed ID: 16343590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfide emissions in sewer networks: focus on liquid to gas mass transfer coefficient.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2017 Apr; 75(7-8):1899-1908. PubMed ID: 28452782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of reduced water consumption on sulfide and methane production in rising main sewers.
    Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z
    J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation.
    Vollertsen J; Nielsen AH; Jensen HS; Wium-Andersen T; Hvitved-Jacobsen T
    Sci Total Environ; 2008 May; 394(1):162-70. PubMed ID: 18281080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.
    Ai H; Xu J; Huang W; He Q; Ni B; Wang Y
    Water Sci Technol; 2016; 73(7):1572-82. PubMed ID: 27054728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review.
    Demars BO; Manson JR
    Water Res; 2013 Jan; 47(1):1-15. PubMed ID: 23123047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.
    Sun X; Jiang G; Bond PL; Keller J
    Water Res; 2015 Sep; 81():84-91. PubMed ID: 26043374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of oxygen fluxes in a long gravity sewer.
    Huisman JL; Gasser T; Gienal C; Kühni M; Krebs P; Gujer W
    Water Res; 2004 Mar; 38(5):1237-47. PubMed ID: 14975657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.