These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28953491)

  • 1. Learning Effects in Psychophysical Tests of Spectral and Temporal Resolution.
    de Jong MAM; Briaire JJ; Frijns JHM
    Ear Hear; 2018; 39(3):475-481. PubMed ID: 28953491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinguistic Outcome Measures in Adult Cochlear Implant Users Over the First Year of Implantation.
    Drennan WR; Won JH; Timme AO; Rubinstein JT
    Ear Hear; 2016; 37(3):354-64. PubMed ID: 26656317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants.
    de Jong MAM; Briaire JJ; Frijns JHM
    Ear Hear; 2019; 40(1):34-44. PubMed ID: 29742542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users.
    Won JH; Drennan WR; Rubinstein JT
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):384-92. PubMed ID: 17587137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.
    Drennan WR; Anderson ES; Won JH; Rubinstein JT
    Ear Hear; 2014; 35(3):e92-8. PubMed ID: 24552679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic current focusing for loudness encoding in cochlear implants: a take-home trial.
    de Jong MAM; Briaire JJ; van der Woude SFS; Frijns JHM
    Int J Audiol; 2019 Sep; 58(9):553-564. PubMed ID: 31012768
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution.
    Dingemanse JG; Goedegebure A
    Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Take-Home Trial Comparing Fast Fourier Transformation-Based and Filter Bank-Based Cochlear Implant Speech Coding Strategies.
    de Jong MAM; Briaire JJ; Frijns JHM
    Biomed Res Int; 2017; 2017():7915042. PubMed ID: 29057265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive Abilities Contribute to Spectro-Temporal Discrimination in Children Who Are Hard of Hearing.
    Kirby BJ; Spratford M; Klein KE; McCreery RW
    Ear Hear; 2019; 40(3):645-650. PubMed ID: 30130295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech Understanding With Various Maskers in Cochlear-Implant and Simulated Cochlear-Implant Hearing: Effects of Spectral Resolution and Implications for Masking Release.
    Croghan NBH; Smith ZM
    Trends Hear; 2018; 22():2331216518787276. PubMed ID: 30022730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Mandarin Chinese Speech Recognition in Adults with Cochlear Implants Using the Spectral Ripple Discrimination Test.
    Dai C; Zhao Z; Shen W; Zhang D; Lei G; Qiao Y; Yang S
    Med Sci Monit; 2018 May; 24():3557-3563. PubMed ID: 29806954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; EscabĂ­ M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech intelligibility as a predictor of cochlear implant outcome in prelingually deafened adults.
    van Dijkhuizen JN; Beers M; Boermans PP; Briaire JJ; Frijns JH
    Ear Hear; 2011; 32(4):445-58. PubMed ID: 21258238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Optimized Pitch and Language Strategy in Cochlear Implant Recipients.
    Vandali A; Dawson P; Au A; Yu Y; Brown M; Goorevich M; Cowan R
    Ear Hear; 2019; 40(3):555-567. PubMed ID: 30067558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion of Spectral Ripples Through Cochlear Implants Has Major Implications for Interpreting Performance Scores.
    Winn MB; O'Brien G
    Ear Hear; 2022; 43(3):764-772. PubMed ID: 34966157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stimulation rate with the Nucleus 24 ACE speech coding strategy.
    Holden LK; Skinner MW; Holden TA; Demorest ME
    Ear Hear; 2002 Oct; 23(5):463-76. PubMed ID: 12411779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity?
    Zhou N; Dixon S; Zhu Z; Dong L; Weiner M
    Trends Hear; 2020; 24():2331216520948385. PubMed ID: 32895024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability.
    Koch DB; Osberger MJ; Segel P; Kessler D
    Audiol Neurootol; 2004; 9(4):214-23. PubMed ID: 15205549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.