These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28953904)

  • 1. Predicting forest insect flight activity: A Bayesian network approach.
    Pawson SM; Marcot BG; Woodberry OG
    PLoS One; 2017; 12(9):e0183464. PubMed ID: 28953904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Host Volatile Release Rate and Racemic Fuscumol on Trap Catch of Hylurgus ligniperda, Hylastes ater (Coleoptera: Curculionidae), and Arhopalus ferus (Coleoptera: Cerambycidae).
    Kerr JL; Dickson G; O'Connor BC; Somchit C; Sweeney J; Pawson SM
    J Econ Entomol; 2022 Feb; 115(1):168-177. PubMed ID: 34761254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory Cues, Visual Cues, and Semiochemical Diversity Interact During Host Location by Invasive Forest Beetles.
    Kerr JL; Kelly D; Bader MK; Brockerhoff EG
    J Chem Ecol; 2017 Jan; 43(1):17-25. PubMed ID: 27832345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Effects on the Survival and Development of Two Pest Bark Beetles Hylurgus ligniperda F. (Coleoptera: Curculionidae) and Hylastes ater Paykull (Coleoptera: Curculionidae).
    Pugh AR; Romo CM; Clare GK; Meurisse N; Bader MKF; Pawson SM
    Environ Entomol; 2023 Feb; 52(1):56-66. PubMed ID: 36377306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and recognition of the invasive species, Hylurgus ligniperda, in traps, based on a cascaded convolution neural network.
    Zhang X; Li Z; Ren L; Liu X; Zeng T; Tao J
    Pest Manag Sci; 2024 Sep; 80(9):4223-4230. PubMed ID: 38629795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying dispersal of a non-aggressive saprophytic bark beetle.
    Meurisse N; Pawson S
    PLoS One; 2017; 12(4):e0174111. PubMed ID: 28406924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature, not net primary productivity, drives continental-scale variation in insect flight activity.
    Tielens EK; Kelly J
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230114. PubMed ID: 38705173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated flight-interception traps for interval sampling of insects.
    Bolliger J; Collet M; Hohl M; Obrist MK
    PLoS One; 2020; 15(7):e0229476. PubMed ID: 32649703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using differential responses to light spectra as a monitoring and control tool for Arhopalus ferus (Coleoptera: Cerambycidae) and other exotic wood-boring pests.
    Pawson SM; Watt MS; Brockerhoff EG
    J Econ Entomol; 2009 Feb; 102(1):79-85. PubMed ID: 19253621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Growth and Survival of Hylurgus ligniperda (Coleoptera: Scolytinae) and Arhopalus ferus (Coleoptera: Cerambycidae) Reared on Artificial or Natural Diet at 15 or 25°C.
    Romo CM; Bader MK; Pawson SM
    J Econ Entomol; 2016 Feb; 109(1):232-9. PubMed ID: 26476555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observations of movement dynamics of flying insects using high resolution lidar.
    Kirkeby C; Wellenreuther M; Brydegaard M
    Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.
    González-Moreno A; Bordera S; Leirana-Alcocer J; Delfín-González H
    Environ Entomol; 2012 Jun; 41(3):587-93. PubMed ID: 22732617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight mill performance of the lacewing Chrysoperla sinica (Neuroptera: Chrysopidae) as a function of age, temperature, and relative humidity.
    Liu Z; McNeil JN; Wu K
    J Econ Entomol; 2011 Feb; 104(1):94-100. PubMed ID: 21404845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating insect flight densities from attractive trap catches and flight height distributions.
    Byers JA
    J Chem Ecol; 2012 May; 38(5):592-601. PubMed ID: 22527056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A field-based modeling study on ecological characterization of hourly host-seeking behavior and its associated climatic variables in Aedes albopictus.
    Yin Q; Li L; Guo X; Wu R; Shi B; Wang Y; Liu Y; Wu S; Pan Y; Wang Q; Xie T; Hu T; Xia D; Xia S; Kambalame DM; Li W; Song Z; Zhou S; Deng Y; Xie Y; Zhou XN; Wang C; Chen XG; Zhou X
    Parasit Vectors; 2019 Oct; 12(1):474. PubMed ID: 31610804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight.
    Ahmed I; Faruque IA
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35439741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Flight Mill for the Study of Tethered Flight in Insects.
    Attisano A; Murphy JT; Vickers A; Moore PJ
    J Vis Exp; 2015 Dec; (106):e53377. PubMed ID: 26709537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting insect migration density and speed in the daytime convective boundary layer.
    Bell JR; Aralimarad P; Lim KS; Chapman JW
    PLoS One; 2013; 8(1):e54202. PubMed ID: 23359799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking Small-Scale Flight Manoeuvers and Density Profiles to the Vertical Movement of Insects in the Nocturnal Stable Boundary Layer.
    Wainwright CE; Reynolds DR; Reynolds AM
    Sci Rep; 2020 Jan; 10(1):1019. PubMed ID: 31974508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.