BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28954203)

  • 1. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering.
    Tekarslan-Sahin SH; Alkim C; Sezgin T
    Bosn J Basic Med Sci; 2018 Feb; 18(1):55-65. PubMed ID: 28954203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and Transcriptomic Analysis of a Chronologically Long-Lived Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering.
    Arslan M; Holyavkin C; Kısakesen Hİ; Topaloğlu A; Sürmeli Y; Çakar ZP
    Mol Biotechnol; 2018 Jul; 60(7):468-484. PubMed ID: 29779127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol.
    Mobini-Dehkordi M; Nahvi I; Zarkesh-Esfahani H; Ghaedi K; Tavassoli M; Akada R
    J Biosci Bioeng; 2008 Apr; 105(4):403-8. PubMed ID: 18499058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
    Küçükgöze G; Alkım C; Yılmaz Ü; Kısakesen Hİ; Gündüz S; Akman S; Çakar ZP
    FEMS Yeast Res; 2013 Dec; 13(8):731-46. PubMed ID: 23992612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae.
    Yin N; Zhu G; Luo Q; Liu J; Chen X; Liu L
    Biotechnol Bioeng; 2020 Mar; 117(3):710-720. PubMed ID: 31814106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and Molecular Characterization of an Oxidative Stress-Resistant
    Kocaefe-Özşen N; Yilmaz B; Alkım C; Arslan M; Topaloğlu A; Kısakesen HLB; Gülsev E; Çakar ZP
    Front Microbiol; 2022; 13():822864. PubMed ID: 35283819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic, transcriptomic and physiological analyses of silver-resistant Saccharomyces cerevisiae obtained by evolutionary engineering.
    Terzioğlu E; Alkım C; Arslan M; Balaban BG; Holyavkin C; Kısakesen Hİ; Topaloğlu A; Yılmaz Şahin Ü; Gündüz Işık S; Akman S; Çakar ZP
    Yeast; 2020 Sep; 37(9-10):413-426. PubMed ID: 33464648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and genetic characterisation of osmosensitive mutants of Saccharomyes cerevisiae.
    Brüning AR; Bauer J; Krems B; Entian KD; Prior BA
    Arch Microbiol; 1998 Aug; 170(2):99-105. PubMed ID: 9683646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.
    Turanlı-Yıldız B; Benbadis L; Alkım C; Sezgin T; Akşit A; Gökçe A; Öztürk Y; Baykal AT; Çakar ZP; François JM
    J Biosci Bioeng; 2017 Sep; 124(3):309-318. PubMed ID: 28552194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis Reveals that MAPK Signaling Pathway Mediates Salt Tolerance of YMR253C ORF in Saccharomyces cerevisiae.
    Zhang Y; Li M; Deng J; Bai C; Ma J; Lyu L
    Curr Microbiol; 2022 Mar; 79(5):126. PubMed ID: 35278139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineering of yeast.
    Alkım C; Turanlı-Yıldız B; Cakar ZP
    Methods Mol Biol; 2014; 1152():169-83. PubMed ID: 24744033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic and transcriptomic responses of two C
    Essemine J; Qu M; Lyu MA; Song Q; Khan N; Chen G; Wang P; Zhu XG
    J Plant Physiol; 2020 Oct; 253():153244. PubMed ID: 32818766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain.
    Sürmeli Y; Holyavkin C; Topaloğlu A; Arslan M; Kısakesen Hİ; Çakar ZP
    World J Microbiol Biotechnol; 2019 Nov; 35(12):183. PubMed ID: 31728740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation.
    Li BZ; Cheng JS; Qiao B; Yuan YJ
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):43-55. PubMed ID: 19821132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.
    Jin Y; Jing W; Zhang Q; Zhang W
    J Plant Res; 2015 Jan; 128(1):211-20. PubMed ID: 25416933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
    Samakkarn W; Vandecruys P; Moreno MRF; Thevelein J; Ratanakhanokchai K; Soontorngun N
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):153. PubMed ID: 38240846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.