BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28954249)

  • 1. Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products.
    Bensidhom G; Ben Hassen-Trabelsi A; Alper K; Sghairoun M; Zaafouri K; Trabelsi I
    Bioresour Technol; 2018 Jan; 247():363-369. PubMed ID: 28954249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2017 Oct; 241():563-572. PubMed ID: 28601774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst.
    Dong Q; Li H; Niu M; Luo C; Zhang J; Qi B; Li X; Zhong W
    Bioresour Technol; 2018 Oct; 266():284-290. PubMed ID: 29982049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.
    Omoriyekomwan JE; Tahmasebi A; Yu J
    Bioresour Technol; 2016 May; 207():188-96. PubMed ID: 26890793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.
    Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI
    Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2018 Feb; 249():42-48. PubMed ID: 29040858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials.
    Saikia R; Chutia RS; Kataki R; Pant KK
    Bioresour Technol; 2015; 188():265-72. PubMed ID: 25677534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production.
    Abu Bakar MS; Ahmed A; Jeffery DM; Hidayat S; Sukri RS; Mahlia TMI; Jamil F; Khurrum MS; Inayat A; Moogi S; Park YK
    Bioresour Technol; 2020 Dec; 318():123913. PubMed ID: 32753242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis.
    Islam MR; Parveen M; Haniu H
    Bioresour Technol; 2010 Jun; 101(11):4162-8. PubMed ID: 20133132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and characterization of chars from cherry pulp via pyrolysis.
    Pehlivan E; Özbay N; Yargıç AS; Şahin RZ
    J Environ Manage; 2017 Dec; 203(Pt 3):1017-1025. PubMed ID: 28495055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes.
    Ben Salem I; El Gamal M; Sharma M; Hameedi S; Howari FM
    J Environ Manage; 2021 Dec; 299():113644. PubMed ID: 34474257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.
    Irfan M; Chen Q; Yue Y; Pang R; Lin Q; Zhao X; Chen H
    Bioresour Technol; 2016 Jul; 211():457-63. PubMed ID: 27035478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system.
    Wang Y; Zeng Z; Tian X; Dai L; Jiang L; Zhang S; Wu Q; Wen P; Fu G; Liu Y; Ruan R
    Bioresour Technol; 2018 Dec; 269():162-168. PubMed ID: 30172179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Jun; 162():96-102. PubMed ID: 24747387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior.
    Rahman MA
    Waste Manag; 2018 Oct; 80():310-318. PubMed ID: 30455012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.
    Zaafouri K; Ben Hassen Trabelsi A; Krichah S; Ouerghi A; Aydi A; Claumann CA; André Wüst Z; Naoui S; Bergaoui L; Hamdi M
    Bioresour Technol; 2016 May; 207():387-98. PubMed ID: 26897417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.