BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28954511)

  • 1. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: Formation mechanism of disordered regions along each cellulose microfibril.
    Funahashi R; Ono Y; Tanaka R; Yokoi M; Daido K; Inamochi T; Saito T; Horikawa Y; Isogai A
    Int J Biol Macromol; 2018 Apr; 109():914-920. PubMed ID: 29146560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils.
    Ono Y; Fukui S; Funahashi R; Isogai A
    Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation.
    Okita Y; Saito T; Isogai A
    Biomacromolecules; 2010 Jun; 11(6):1696-700. PubMed ID: 20450172
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.
    Horikawa Y; Shimizu M; Saito T; Isogai A; Imai T; Sugiyama J
    Int J Biol Macromol; 2018 Apr; 109():569-575. PubMed ID: 29225180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of crystalline allomorphs in cellulose microfibril.
    Horikawa Y; Sugiyama J
    Biomacromolecules; 2009 Aug; 10(8):2235-9. PubMed ID: 19505136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.
    Gorshkova T; Mokshina N; Chernova T; Ibragimova N; Salnikov V; Mikshina P; Tryfona T; Banasiak A; Immerzeel P; Dupree P; Mellerowicz EJ
    Plant Physiol; 2015 Nov; 169(3):2048-63. PubMed ID: 26378099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid.
    Nge TT; Sugiyama J
    J Biomed Mater Res A; 2007 Apr; 81(1):124-34. PubMed ID: 17111406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers.
    Ogawa Y
    Carbohydr Polym; 2021 Jan; 251():117102. PubMed ID: 33142640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose microfibril angle in the cell wall of wood fibres.
    Barnett JR; Bonham VA
    Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using
    Phyo P; Wang T; Yang Y; O'Neill H; Hong M
    Biomacromolecules; 2018 May; 19(5):1485-1497. PubMed ID: 29562125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls.
    Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH
    Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.