BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28954511)

  • 21. Periodic disorder along ramie cellulose microfibrils.
    Nishiyama Y; Kim UJ; Kim DY; Katsumata KS; May RP; Langan P
    Biomacromolecules; 2003; 4(4):1013-7. PubMed ID: 12857086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall.
    Brett CT
    Int Rev Cytol; 2000; 199():161-99. PubMed ID: 10874579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T; Kimura S; Nishiyama Y; Isogai A
    Biomacromolecules; 2007 Aug; 8(8):2485-91. PubMed ID: 17630692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Shape of Native Plant Cellulose Microfibrils.
    Kubicki JD; Yang H; Sawada D; O'Neill H; Oehme D; Cosgrove D
    Sci Rep; 2018 Sep; 8(1):13983. PubMed ID: 30228280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses.
    Thomas LH; Forsyth VT; Martel A; Grillo I; Altaner CM; Jarvis MC
    BMC Plant Biol; 2015 Jun; 15():153. PubMed ID: 26099632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the nature of cellulose microfibrils.
    Su Y; Burger C; Ma H; Chu B; Hsiao BS
    Biomacromolecules; 2015 Apr; 16(4):1201-9. PubMed ID: 25794054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.
    Hiraoki R; Ono Y; Saito T; Isogai A
    Biomacromolecules; 2015 Feb; 16(2):675-81. PubMed ID: 25584418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
    Clair B; Alméras T; Pilate G; Jullien D; Sugiyama J; Riekel C
    Plant Physiol; 2010 Mar; 152(3):1650-8. PubMed ID: 20071605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.
    Gierlinger N; Luss S; König C; Konnerth J; Eder M; Fratzl P
    J Exp Bot; 2010; 61(2):587-95. PubMed ID: 20007198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accessibility of cellulose: Structural changes and their reversibility in aqueous media.
    Pönni R; Kontturi E; Vuorinen T
    Carbohydr Polym; 2013 Apr; 93(2):424-9. PubMed ID: 23499078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.
    Lindeboom J; Mulder BM; Vos JW; Ketelaar T; Emons AM
    J Microsc; 2008 Aug; 231(2):192-200. PubMed ID: 18778417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    J Struct Biol; 2009 Nov; 168(2):337-44. PubMed ID: 19567269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The size of the cellulose microfibril.
    COLVIN JR
    J Cell Biol; 1963 Apr; 17(1):105-9. PubMed ID: 14022465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.