These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28954511)

  • 41. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling.
    Hirota M; Furihata K; Saito T; Kawada T; Isogai A
    Angew Chem Int Ed Engl; 2010 Oct; 49(42):7670-2. PubMed ID: 20839205
    [No Abstract]   [Full Text] [Related]  

  • 45. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.
    Cybulska J; Zdunek A; Psonka-Antonczyk KM; Stokke BT
    Carbohydr Polym; 2013 Jan; 92(1):128-37. PubMed ID: 23218275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.
    Cho SH; Du J; Sines I; Poosarla VG; Vepachedu V; Kafle K; Park YB; Kim SH; Kumar M; Nixon BT
    Biochem J; 2015 Sep; 470(2):195-205. PubMed ID: 26348908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions.
    Saito T; Isogai A
    Biomacromolecules; 2004; 5(5):1983-9. PubMed ID: 15360314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose.
    Yamamoto M; Kuramae R; Yanagisawa M; Ishii D; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):3982-8. PubMed ID: 21928815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture.
    Jarvis MC
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277742
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue-specific directionality of cellulose synthase complex movement inferred from cellulose microfibril polarity in secondary cell walls of Arabidopsis.
    Choi J; Makarem M; Lee C; Lee J; Kiemle S; Cosgrove DJ; Kim SH
    Sci Rep; 2023 Dec; 13(1):22007. PubMed ID: 38086837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The cellulose resource matrix.
    Keijsers ER; Yılmaz G; van Dam JE
    Carbohydr Polym; 2013 Mar; 93(1):9-21. PubMed ID: 23465896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension.
    Kimura F; Kimura T; Tamura M; Hirai A; Ikuno M; Horii F
    Langmuir; 2005 Mar; 21(5):2034-7. PubMed ID: 15723507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa.
    Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM
    J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellulose Elementary Fibrils Assemble into Helical Bundles in S
    Reza M; Bertinetto C; Ruokolainen J; Vuorinen T
    Biomacromolecules; 2017 Feb; 18(2):374-378. PubMed ID: 28084728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RETRACTED: Optimized reducing-end labeling of cellulose nanocrystals: Implication for the structure of microfibril bundles in plant cell walls.
    Lin F; Putaux JL; Jean B
    Carbohydr Polym; 2021 Apr; 257():117618. PubMed ID: 33541646
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling cellulose microfibrils: a twisted tale.
    Hadden JA; French AD; Woods RJ
    Biopolymers; 2013 Oct; 99(10):746-56. PubMed ID: 23681971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.
    Sun L; Singh S; Joo M; Vega-Sanchez M; Ronald P; Simmons BA; Adams P; Auer M
    Biotechnol Bioeng; 2016 Jan; 113(1):82-90. PubMed ID: 26137889
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gas-phase surface esterification of cellulose microfibrils and whiskers.
    Berlioz S; Molina-Boisseau S; Nishiyama Y; Heux L
    Biomacromolecules; 2009 Aug; 10(8):2144-51. PubMed ID: 19572699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.