These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28954849)

  • 1. Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.
    Tronnolone H; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-Limited Growth of Microbial Colonies.
    Tronnolone H; Tam A; Szenczi Z; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    Sci Rep; 2018 Apr; 8(1):5992. PubMed ID: 29662092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the shape patterns of dimorphic yeast pseudohyphae.
    Gontar A; Bottema MJ; Binder BJ; Tronnolone H
    R Soc Open Sci; 2018 Oct; 5(10):180820. PubMed ID: 30473830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying two-dimensional filamentous and invasive growth spatial patterns in yeast colonies.
    Binder BJ; Sundstrom JF; Gardner JM; Jiranek V; Oliver SG
    PLoS Comput Biol; 2015 Feb; 11(2):e1004070. PubMed ID: 25719406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae.
    Fujita A; Hiroko T; Hiroko F; Oka C
    Gene; 2005 Dec; 363():97-104. PubMed ID: 16289536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms.
    Tam A; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Binder BJ
    J Theor Biol; 2018 Jul; 448():122-141. PubMed ID: 29630992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae.
    Viard B; Kuriyama H
    Biochem Biophys Res Commun; 1997 Apr; 233(2):480-6. PubMed ID: 9144562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
    Lorenz MC; Heitman J
    EMBO J; 1997 Dec; 16(23):7008-18. PubMed ID: 9384580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.
    Casalone E; Barberio C; Cappellini L; Polsinelli M
    Res Microbiol; 2005 Mar; 156(2):191-200. PubMed ID: 15748984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Lorenz MC; Heitman J
    EMBO J; 1998 Aug; 17(5):1236-47. PubMed ID: 9482721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling uniaxial non-uniform yeast colony growth: Comparing an agent-based model and continuum approximations.
    Gallo AJ; Tronnolone H; Green JEF; Binder BJ
    J Theor Biol; 2021 Aug; 523():110715. PubMed ID: 33862095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.
    Kim J; Rose MD
    PLoS Genet; 2015 Dec; 11(12):e1005684. PubMed ID: 26640955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling cell growth and its modulation of the G1/S transition.
    Alarcón T; Tindall MJ
    Bull Math Biol; 2007 Jan; 69(1):197-214. PubMed ID: 17086369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying dimorphic yeasts as model organisms to study mycelial growth: part 2. Use of mathematical simulations to identify different construction principles in yeast colonies.
    Walther T; Reinsch H; Ostermann K; Deutsch A; Bley T
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):21-31. PubMed ID: 20549519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized growth in fungi: symmetry breaking and hyphal formation.
    Arkowitz RA; Bassilana M
    Semin Cell Dev Biol; 2011 Oct; 22(8):806-15. PubMed ID: 21906692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture.
    Vopálenská I; St'ovícek V; Janderová B; Váchová L; Palková Z
    Environ Microbiol; 2010 Jan; 12(1):264-77. PubMed ID: 19799621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A putative phospholipase C is involved in Pichia fermentans dimorphic transition.
    Sanna ML; Zara G; Zara S; Migheli Q; Budroni M; Mannazzu I
    Biochim Biophys Acta; 2014 Jan; 1840(1):344-9. PubMed ID: 24076234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of cell proliferation of Saccharomyces cerevisiae strains by sedimentation/steric field flow fractionation in situ.
    Farmakis L; Koliadima A
    Biotechnol Prog; 2005; 21(3):971-7. PubMed ID: 15932282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell shape and growth of budding yeast cells in restrictive microenvironments.
    Suzuki M; Asada Y; Watanabe D; Ohya Y
    Yeast; 2004 Sep; 21(12):983-9. PubMed ID: 15449311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.
    Medintz IL; Vora GJ; Rahbar AM; Thach DC
    Mol Biosyst; 2007 Sep; 3(9):623-34. PubMed ID: 17700863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.