These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28954850)

  • 1. The power-speed relationship is U-shaped in two free-flying hawkmoths (
    Warfvinge K; KleinHeerenbrink M; Hedenström A
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight motor modulation with speed in the hawkmoth Manduca sexta.
    Hedrick TL; Martínez-Blat J; Goodman MJ
    J Insect Physiol; 2017 Jan; 96():115-121. PubMed ID: 27983942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds.
    Johansson LC; Maeda M; Henningsson P; Hedenström A
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement.
    von Busse R; Waldman RM; Swartz SM; Voigt CC; Breuer KS
    J R Soc Interface; 2014 Jun; 11(95):20140147. PubMed ID: 24718450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
    Nguyen AT; Han JS; Han JH
    Bioinspir Biomim; 2016 Dec; 12(1):016007. PubMed ID: 27966467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.
    Bomphrey RJ; Lawson NJ; Harding NJ; Taylor GK; Thomas AL
    J Exp Biol; 2005 Mar; 208(Pt 6):1079-94. PubMed ID: 15767309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.
    Tytell ED; Ellington CP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1559-66. PubMed ID: 14561347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schlieren photography on freely flying hawkmoth.
    Liu Y; Roll J; Van Kooten S; Deng X
    Biol Lett; 2018 May; 14(5):. PubMed ID: 29769300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
    Kim JK; Han JS; Lee JS; Han JH
    Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating power curves of flying vertebrates.
    Rayner JM
    J Exp Biol; 1999 Dec; 202(Pt 23):3449-61. PubMed ID: 10562528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation.
    Willmott AP; Ellington CP
    J Exp Biol; 1997 Nov; 200(Pt 21):2723-45. PubMed ID: 9418030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hawkmoth flight in the unsteady wakes of flowers.
    Matthews M; Sponberg S
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Span efficiency in hawkmoths.
    Henningsson P; Bomphrey RJ
    J R Soc Interface; 2013 Jul; 10(84):20130099. PubMed ID: 23658113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring power input, power output and energy conversion efficiency in un-instrumented flying birds.
    Hedh L; Guglielmo CG; Johansson LC; Deakin JE; Voigt CC; Hedenström A
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32796040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconventional lift-generating mechanisms in free-flying butterflies.
    Srygley RB; Thomas AL
    Nature; 2002 Dec; 420(6916):660-4. PubMed ID: 12478291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless stimulation of antennal muscles in freely flying hawkmoths leads to flight path changes.
    Hinterwirth AJ; Medina B; Lockey J; Otten D; Voldman J; Lang JH; Hildebrand JG; Daniel TL
    PLoS One; 2012; 7(12):e52725. PubMed ID: 23300751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.