These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28955036)

  • 1. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells.
    Xue M; Hou J; Wang L; Cheng D; Lu J; Zheng L; Xu T
    Sci Rep; 2017 Sep; 7(1):12039. PubMed ID: 28955036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals.
    Luker KE; Smith MC; Luker GD; Gammon ST; Piwnica-Worms H; Piwnica-Worms D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12288-93. PubMed ID: 15284440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications.
    Huang MS; Lin WC; Chang JH; Cheng CH; Wang HY; Mou KY
    Protein Sci; 2019 Sep; 28(9):1703-1712. PubMed ID: 31306516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria.
    Ahamed M; Jaisinghani N; Li M; Winkeler I; Silva S; Previti ML; Seeliger JC
    Methods Enzymol; 2022; 664():267-289. PubMed ID: 35331378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2.
    Hung V; Udeshi ND; Lam SS; Loh KH; Cox KJ; Pedram K; Carr SA; Ting AY
    Nat Protoc; 2016 Mar; 11(3):456-75. PubMed ID: 26866790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
    Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.
    Parada CA; de Oliveira IP; Gewehr MCF; Machado-Neto JA; Lima K; Eichler RAS; Lopes LR; Bechara LRG; Ferreira JCB; Festuccia WT; Censoni L; Tersariol ILS; Ferro ES
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APEX2-Mediated Proximity Protein Labeling in Dictyostelium.
    Takashima JA; Woroniecka HA; Charest PG
    Methods Mol Biol; 2024; 2814():119-131. PubMed ID: 38954202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.
    Hwang J; Espenshade PJ
    Biochem J; 2016 Aug; 473(16):2463-9. PubMed ID: 27274088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting.
    Han S; Zhao BS; Myers SA; Carr SA; He C; Ting AY
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22068-22079. PubMed ID: 32839320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An APEX2 proximity ligation method for mapping interactions with the nuclear lamina.
    Tran JR; Paulson DI; Moresco JJ; Adam SA; Yates JR; Goldman RD; Zheng Y
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33306092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity Labeling by a Recombinant APEX2-FGF1 Fusion Protein Reveals Interaction of FGF1 with the Proteoglycans CD44 and CSPG4.
    Zhen Y; Haugsten EM; Singh SK; Wesche J
    Biochemistry; 2018 Jul; 57(26):3807-3816. PubMed ID: 29812912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.
    Paulmurugan R; Gambhir SS
    Cancer Res; 2005 Aug; 65(16):7413-20. PubMed ID: 16103094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions.
    To TL; Zhang Q; Shu X
    Protein Sci; 2016 Mar; 25(3):748-53. PubMed ID: 26690964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules.
    PadrĂ³n A; Iwasaki S; Ingolia NT
    Mol Cell; 2019 Aug; 75(4):875-887.e5. PubMed ID: 31442426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Tension Probe for In Vitro Bioassays.
    Kim SB; Fujii R; Miller S; Tanabe M
    Methods Mol Biol; 2022; 2524():91-103. PubMed ID: 35821465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and evaluation of parathyroid hormone receptor
    Charest-Morin X; Poubelle PE; Marceau F
    Sci Rep; 2017 Oct; 7(1):13099. PubMed ID: 29026164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 20. APEX2- tagging of Sigma 1-receptor indicates subcellular protein topology with cytosolic N-terminus and ER luminal C-terminus.
    Mavylutov T; Chen X; Guo L; Yang J
    Protein Cell; 2018 Aug; 9(8):733-737. PubMed ID: 28929457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.