These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28955054)

  • 21. Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay.
    Shi W; Guo L; Kasdan H; Tai YC
    Lab Chip; 2013 Apr; 13(7):1257-65. PubMed ID: 23389050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microflow cytometers with integrated hydrodynamic focusing.
    Frankowski M; Theisen J; Kummrow A; Simon P; Ragusch H; Bock N; Schmidt M; Neukammer J
    Sensors (Basel); 2013 Apr; 13(4):4674-93. PubMed ID: 23571670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical microflow cytometer based on external total reflection.
    Fu LM; Wang YN
    Electrophoresis; 2012 Nov; 33(21):3229-35. PubMed ID: 22949332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning.
    Liu C; Ding B; Xue C; Tian Y; Hu G; Sun J
    Anal Chem; 2016 Dec; 88(24):12547-12553. PubMed ID: 28193038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microflow cytometer exploited for the immunological differentiation of leukocytes.
    Frankowski M; Bock N; Kummrow A; Schädel-Ebner S; Schmidt M; Tuchscheerer A; Neukammer J
    Cytometry A; 2011 Aug; 79(8):613-24. PubMed ID: 21618424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high-discernment microflow cytometer with microweir structure.
    Fu LM; Tsai CH; Lin CH
    Electrophoresis; 2008 May; 29(9):1874-80. PubMed ID: 18384041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Sluyter R; Zhao Q; Yan S; Alici G; Li W
    Lab Chip; 2016 Oct; 16(20):3919-3928. PubMed ID: 27714019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical performance of an ultrasonic particle focusing flow cytometer.
    Goddard GR; Sanders CK; Martin JC; Kaduchak G; Graves SW
    Anal Chem; 2007 Nov; 79(22):8740-6. PubMed ID: 17924647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Counting of Escherichia coli by a microflow cytometer based on a photonic-microfluidic integrated device.
    Guo T; Wei Y; Xu C; Watts BR; Zhang Z; Fang Q; Zhang H; Selvaganapathy PR; Deen MJ
    Electrophoresis; 2015 Jan; 36(2):298-304. PubMed ID: 25348197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lab-in-a-fiber-based integrated particle separation and counting.
    Kumar T; Harish AV; Etcheverry S; Margulis W; Laurell F; Russom A
    Lab Chip; 2023 May; 23(9):2286-2293. PubMed ID: 37070926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration.
    Grenvall C; Antfolk C; Bisgaard CZ; Laurell T
    Lab Chip; 2014 Dec; 14(24):4629-37. PubMed ID: 25300357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry.
    Pärnamets K; Pardy T; Koel A; Rang T; Scheler O; Le Moullec Y; Afrin F
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33807031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro flow cytometer with self-aligned 3D hydrodynamic focusing.
    Testa G; Persichetti G; Bernini R
    Biomed Opt Express; 2015 Jan; 6(1):54-62. PubMed ID: 25657874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable, Sheathless Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets.
    Chen Q; Li D; Malekanfard A; Cao Q; Lin J; Wang M; Han X; Xuan X
    Anal Chem; 2018 Jul; 90(14):8600-8606. PubMed ID: 29923401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.