These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28955217)

  • 1. Different-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network.
    Jin L; Liao B; Liu M; Xiao L; Guo D; Yan X
    Front Neurorobot; 2017; 11():50. PubMed ID: 28955217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-criteria Acceleration Level Obstacle Avoidance of Redundant Manipulator.
    Zhao W; Li X; Chen X; Su X; Tang G
    Front Neurorobot; 2020; 14():54. PubMed ID: 33178005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined Self-Motion Scheme With Zero Initial Velocities and Time-Varying Physical Limits
    Tang Z; Zhang Y
    Front Neurorobot; 2022; 16():945346. PubMed ID: 36061146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms.
    Jin L; Zhang Y
    IEEE Trans Cybern; 2015 Feb; 45(2):153-64. PubMed ID: 24846689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Velocity-Level Bi-Criteria Optimization Scheme for Coordinated Path Tracking of Dual Robot Manipulators Using Recurrent Neural Network.
    Xiao L; Zhang Y; Liao B; Zhang Z; Ding L; Jin L
    Front Neurorobot; 2017; 11():47. PubMed ID: 28928651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural-Dynamic Based Synchronous-Optimization Scheme of Dual Redundant Robot Manipulators.
    Zhang Z; Zhou Q; Fan W
    Front Neurorobot; 2018; 12():73. PubMed ID: 30467471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators.
    Guo D; Xu F; Yan L; Nie Z; Shao H
    Front Neurorobot; 2018; 12():51. PubMed ID: 30210328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
    Su H; Hu Y; Karimi HR; Knoll A; Ferrigno G; De Momi E
    Neural Netw; 2020 Nov; 131():291-299. PubMed ID: 32841835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure.
    Mu Z; Han L; Xu W; Li B; Liang B
    Robotics Biomim; 2016; 3(1):16. PubMed ID: 27766193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators.
    Xu Z; Zhou X; Li S
    Front Neurorobot; 2019; 13():47. PubMed ID: 31333442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration-Level Cyclic-Motion Generation of Constrained Redundant Robots Tracking Different Paths.
    Zhijun Zhang ; Yunong Zhang
    IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1257-69. PubMed ID: 22481829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators.
    Zhang Y; Ge SS; Lee TH
    IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2126-32. PubMed ID: 15503508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new performance index for the repetitive motion of mobile manipulators.
    Xiao L; Zhang Y
    IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Recurrent Neural Network for Improving Redundant Manipulator Motion Planning Completeness.
    Li Y; Li S; Hannaford B
    IEEE Int Conf Robot Autom; 2018 May; 2018():2956-2961. PubMed ID: 34336368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor fault diagnosis and fault tolerant control for the multiple manipulator synchronized control system.
    Kang Y; Yao L; Wu W
    ISA Trans; 2020 Nov; 106():243-252. PubMed ID: 32624173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-free kinematic control of redundant manipulators with simultaneous joint-physical-limit and joint-angular-drift handling.
    Yu P; Tan N; Zhong Z; Liao S
    ISA Trans; 2023 Aug; 139():635-649. PubMed ID: 37045716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lagrangian network for kinematic control of redundant robot manipulators.
    Wang J; Hu Q; Jiang D
    IEEE Trans Neural Netw; 1999; 10(5):1123-32. PubMed ID: 18252613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.
    Zhang Z; Li Z; Zhang Y; Luo Y; Li Y
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3251-62. PubMed ID: 26340789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):98-105. PubMed ID: 18244770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNN for Repetitive Motion Generation of Redundant Robot Manipulators: An Orthogonal Projection-Based Scheme.
    Xie Z; Jin L; Luo X; Sun Z; Liu M
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):615-628. PubMed ID: 33079680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.