BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28955467)

  • 1. Update on Nox function, site of action and regulation in
    Marschall R; Siegmund U; Burbank J; Tudzynski P
    Fungal Biol Biotechnol; 2016; 3():8. PubMed ID: 28955467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Protein Disulfide Isomerase of
    Marschall R; Tudzynski P
    Front Microbiol; 2017; 8():960. PubMed ID: 28611757
    [No Abstract]   [Full Text] [Related]  

  • 3. The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1.
    Siegmund U; Heller J; van Kan JA; Tudzynski P
    PLoS One; 2013; 8(2):e55879. PubMed ID: 23418468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea.
    Siegmund U; Marschall R; Tudzynski P
    Mol Microbiol; 2015 Mar; 95(6):988-1005. PubMed ID: 25402961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.
    Marschall R; Schumacher J; Siegmund U; Tudzynski P
    Fungal Genet Biol; 2016 May; 90():12-22. PubMed ID: 26988904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P
    Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea.
    Marschall R; Tudzynski P
    Mol Microbiol; 2016 Jul; 101(2):281-98. PubMed ID: 27062300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes.
    Scott B
    Mol Microbiol; 2015 Mar; 95(6):910-3. PubMed ID: 25620385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH Oxidase Is Crucial for the Cellular Redox Homeostasis in Fungal Pathogen
    Li H; Tian S; Qin G
    Mol Plant Microbe Interact; 2019 Nov; 32(11):1508-1516. PubMed ID: 31230563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans.
    Lara-Ortíz T; Riveros-Rosas H; Aguirre J
    Mol Microbiol; 2003 Nov; 50(4):1241-55. PubMed ID: 14622412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity.
    Roca MG; Weichert M; Siegmund U; Tudzynski P; Fleissner A
    Fungal Biol; 2012 Mar; 116(3):379-87. PubMed ID: 22385620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2009 Aug; 22(8):987-98. PubMed ID: 19589074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
    Govrin EM; Levine A
    Curr Biol; 2000 Jun; 10(13):751-7. PubMed ID: 10898976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
    Sumimoto H
    FEBS J; 2008 Jul; 275(13):3249-77. PubMed ID: 18513324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel zinc finger transcription factor, BcMsn2, is involved in growth, development, and virulence in
    Lu P; Wang K; Wang J; Xia C; Yang S; Ma L; Shi H
    Front Microbiol; 2023; 14():1247072. PubMed ID: 37915851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
    Takemoto D; Tanaka A; Scott B
    Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea.
    Calderón CE; Rotem N; Harris R; Vela-Corcía D; Levy M
    Mol Plant Pathol; 2019 Apr; 20(4):562-574. PubMed ID: 30537338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of reactive oxygen species in fungal cellular differentiations.
    Scott B; Eaton CJ
    Curr Opin Microbiol; 2008 Dec; 11(6):488-93. PubMed ID: 18983937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host-pathogen interaction.
    Schürmann J; Buttermann D; Herrmann A; Giesbert S; Tudzynski P
    Mol Plant Microbe Interact; 2013 Oct; 26(10):1151-64. PubMed ID: 23777432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.