BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28955879)

  • 1. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification.
    Jin W; Peng J; Jiang S
    Biochem Biophys Rep; 2016 Jul; 6():209-219. PubMed ID: 28955879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation.
    Choi J; Jang H; Kim H; Lee JH; Kim ST; Cho EJ; Youn HD
    Nucleic Acids Res; 2014 Jan; 42(1):224-34. PubMed ID: 24078251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis.
    Chakroun I; Yang D; Girgis J; Gunasekharan A; Phenix H; Kærn M; Blais A
    FASEB J; 2015 Nov; 29(11):4738-55. PubMed ID: 26229056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression.
    Lan F; Collins RE; De Cegli R; Alpatov R; Horton JR; Shi X; Gozani O; Cheng X; Shi Y
    Nature; 2007 Aug; 448(7154):718-22. PubMed ID: 17687328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors.
    Choi J; Jang H; Kim H; Kim ST; Cho EJ; Youn HD
    Biochem Biophys Res Commun; 2010 Oct; 401(3):327-32. PubMed ID: 20833138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation.
    Caretti G; Di Padova M; Micales B; Lyons GE; Sartorelli V
    Genes Dev; 2004 Nov; 18(21):2627-38. PubMed ID: 15520282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JMJD3 as an epigenetic regulator in development and disease.
    Burchfield JS; Li Q; Wang HY; Wang RF
    Int J Biochem Cell Biol; 2015 Oct; 67():148-57. PubMed ID: 26193001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury.
    Ma KH; Hung HA; Svaren J
    J Neurosci; 2016 Aug; 36(35):9135-47. PubMed ID: 27581455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic Control of Muscle Stem Cells: Focus on Histone Lysine Demethylases.
    Cicciarello D; Schaeffer L; Scionti I
    Front Cell Dev Biol; 2022; 10():917771. PubMed ID: 35669509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis.
    Wang AH; Zare H; Mousavi K; Wang C; Moravec CE; Sirotkin HI; Ge K; Gutierrez-Cruz G; Sartorelli V
    EMBO J; 2013 Apr; 32(8):1075-86. PubMed ID: 23503590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the epigenetic control of satellite cells.
    Moresi V; Marroncelli N; Adamo S
    World J Stem Cells; 2015 Jul; 7(6):945-55. PubMed ID: 26240681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the transition to flowering by chromatin modifications.
    He Y
    Mol Plant; 2009 Jul; 2(4):554-564. PubMed ID: 19825638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes.
    Chen KW; Chang YJ; Yeh CM; Lian YL; Chan MW; Kao CF; Chen L
    Biochim Biophys Acta Gene Regul Mech; 2017 Feb; 1860(2):270-281. PubMed ID: 28039048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells.
    Noer A; Lindeman LC; Collas P
    Stem Cells Dev; 2009 Jun; 18(5):725-36. PubMed ID: 18771397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic control of adult skeletal muscle stem cell functions.
    Segalés J; Perdiguero E; Muñoz-Cánoves P
    FEBS J; 2015 May; 282(9):1571-88. PubMed ID: 25251895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sumoylation of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis.
    Wang Y; Shankar SR; Kher D; Ling BM; Taneja R
    J Biol Chem; 2013 Jun; 288(24):17654-62. PubMed ID: 23637228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orchestration of H3K27 methylation: mechanisms and therapeutic implication.
    Pan MR; Hsu MC; Chen LT; Hung WC
    Cell Mol Life Sci; 2018 Jan; 75(2):209-223. PubMed ID: 28717873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells.
    Jin Y; Huo B; Fu X; Cheng Z; Zhu J; Zhang Y; Hao T; Hu X
    Biomed Pharmacother; 2017 Aug; 92():896-904. PubMed ID: 28601046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.