BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28955956)

  • 1. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in
    Adi PJ; Yellapu NK; Matcha B
    Biochem Biophys Rep; 2016 Dec; 8():192-199. PubMed ID: 28955956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.
    Pradeepkiran JA; Sainath SB; Kumar KK; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1691-706. PubMed ID: 25834405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M.
    Pradeepkiran JA; Kumar KK; Kumar YN; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1897-912. PubMed ID: 25848225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the virulence of a Brucella melitensis hemagglutinin gene in the caprine model.
    Perry QL; Hagius SD; Walker JV; Elzer PH
    Vaccine; 2010 Oct; 28 Suppl 5():F6-11. PubMed ID: 20362205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Docking and
    Muhammad I; Niaz S; Gul E Nayab ; Hussain A; Ahmad S; Rahman N; Khan H; Ali A
    Curr Comput Aided Drug Des; 2021; 17(7):946-956. PubMed ID: 32532195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis.
    Gupta M; Prasad Y; Sharma SK; Jain CK
    J Biomol Struct Dyn; 2017 Feb; 35(2):287-299. PubMed ID: 26725317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brucella melitensis 16M: characterisation of the galE gene and mouse immunisation studies with a galE deficient mutant.
    Petrovska L; Hewinson RG; Dougan G; Maskell DJ; Woodward MJ
    Vet Microbiol; 1999 Feb; 65(1):21-36. PubMed ID: 10068125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell mediated immune response in goats after experimental challenge with the virulent Brucella melitensis strain 16M and the reduced virulence strain Rev. 1.
    Higgins JL; Bowen RA; Gonzalez-Juarrero M
    Vet Immunol Immunopathol; 2018 Aug; 202():74-84. PubMed ID: 30078602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brucella Melitensis 16M Regulates the Effect of AIR Domain on Inflammatory Factors, Autophagy, and Apoptosis in Mouse Macrophage through the ROS Signaling Pathway.
    Li T; Xu Y; Liu L; Huang M; Wang Z; Tong Z; Zhang H; Guo F; Chen C
    PLoS One; 2016; 11(12):e0167486. PubMed ID: 27907115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach.
    Vishnu US; Sankarasubramanian J; Gunasekaran P; Rajendhran J
    Infect Genet Evol; 2017 Nov; 55():151-158. PubMed ID: 28919551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TceSR two-component regulatory system of Brucella melitensis 16M is involved in invasion, intracellular survival and regulated cytotoxicity for macrophages.
    Li Z; Fu Q; Wang Z; Li T; Zhang H; Guo F; Wang Y; Zhang J; Chen C
    Lett Appl Microbiol; 2015 Jun; 60(6):565-71. PubMed ID: 25721466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between
    Yi J; Wang Y; Li Q; Zhang H; Shao Z; Deng X; He J; Xiao C; Wang Z; Wang Y; Chen C
    J Vet Sci; 2019 Sep; 20(5):e54. PubMed ID: 31565897
    [No Abstract]   [Full Text] [Related]  

  • 13. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19+rP39) against B. abortus 544 and B. melitensis 16M infection in murine model.
    Tadepalli G; Singh AK; Balakrishna K; Murali HS; Batra HV
    Mol Immunol; 2016 Mar; 71():34-41. PubMed ID: 26826463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M.
    Wu T; Wang S; Wang Z; Peng X; Lu Y; Wu Q
    FEMS Microbiol Lett; 2015 Jun; 362(12):fnv078. PubMed ID: 25956175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes.
    Commander NJ; Spencer SA; Wren BW; MacMillan AP
    Vaccine; 2007 Jan; 25(1):43-54. PubMed ID: 17049676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M.
    Eschenbrenner M; Horn TA; Wagner MA; Mujer CV; Miller-Scandle TL; DelVecchio VG
    J Proteome Res; 2006 Jul; 5(7):1731-40. PubMed ID: 16823981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modeling of Brucella persistence in macrophage-like cells in vitro].
    Kulakov IuK; Zheludkov MM; Zigangirova NA
    Zh Mikrobiol Epidemiol Immunobiol; 2009; (4):19-23. PubMed ID: 19715198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunization with individual proteins of the Lrp/AsnC family induces protection against Brucella melitensis 16M challenges in mice.
    Wang X; An C; Yang M; Li X; Ke Y; Lei S; Xu X; Yu J; Ren H; Du X; Wang Z; Qiu Y; Liu B; Chen Z
    Front Microbiol; 2015; 6():1193. PubMed ID: 26579099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of OtpR regulated sRNAs in Brucella melitensis expressed under acidic stress and their roles in pathogenesis and metabolism.
    Vishnu US; Sankarasubramanian J; Gunasekaran P; Rajendhran J
    Comp Immunol Microbiol Infect Dis; 2017 Feb; 50():40-47. PubMed ID: 28131377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic Analysis of the
    Salmon-Divon M; Zahavi T; Kornspan D
    Front Microbiol; 2019; 10():250. PubMed ID: 30837973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.