These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28956046)

  • 1. 3D polymer objects with electronic components interconnected via conformally printed electrodes.
    Jo Y; Kim JY; Jung S; Ahn BY; Lewis JA; Choi Y; Jeong S
    Nanoscale; 2017 Oct; 9(39):14798-14803. PubMed ID: 28956046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: 3D polymer objects with electronic components interconnected via conformally printed electrodes.
    Jo Y; Kim JY; Jung S; Ahn BY; Lewis JA; Choi Y; Jeong S
    Nanoscale; 2018 Feb; 10(6):3068. PubMed ID: 29372748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive silver inks for patterning high-conductivity features at mild temperatures.
    Walker SB; Lewis JA
    J Am Chem Soc; 2012 Jan; 134(3):1419-21. PubMed ID: 22220580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing.
    Novotný F; Urbanová V; Plutnar J; Pumera M
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35371-35375. PubMed ID: 31525017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination.
    Koyama K; Takakura M; Furukawa T; Maruo S
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid 3D Printing of Soft Electronics.
    Valentine AD; Busbee TA; Boley JW; Raney JR; Chortos A; Kotikian A; Berrigan JD; Durstock MF; Lewis JA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28875572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Organic-Ceramic Complex Hybrid Structures with High Silica Content.
    Shukrun E; Cooperstein I; Magdassi S
    Adv Sci (Weinh); 2018 Aug; 5(8):1800061. PubMed ID: 30128232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction.
    Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile method for 3D printing conformally onto uneven surfaces and its application to face masks.
    Ji Z; Brion DAJ; Samson KDG; Pattinson SW
    Sci Rep; 2023 Dec; 13(1):21659. PubMed ID: 38066200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics.
    Green Marques D; Alhais Lopes P; T de Almeida A; Majidi C; Tavakoli M
    Lab Chip; 2019 Feb; 19(5):897-906. PubMed ID: 30724280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics.
    Park JS; Kim T; Kim WS
    Sci Rep; 2017 Jun; 7(1):3246. PubMed ID: 28607350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C.
    Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K
    Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes.
    Wünscher S; Seise B; Pretzel D; Pollok S; Perelaer J; Weber K; Popp J; Schubert US
    Lab Chip; 2014 Jan; 14(2):392-401. PubMed ID: 24276694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature.
    Redondo E; Ng S; Muñoz J; Pumera M
    Nanoscale; 2020 Oct; 12(38):19673-19680. PubMed ID: 32966493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.