These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28956046)

  • 21. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Conductive Water-Based Polymer/Graphene Nanocomposites for Printed Electronics.
    Koutsioukis A; Georgakilas V; Belessi V; Zboril R
    Chemistry; 2017 Jun; 23(34):8268-8274. PubMed ID: 28452403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Dynamics Effects using Pulse-Shaping Laser Sintering of Printed Silver Inks.
    Bolduc M; Trudeau C; Beaupré P; Cloutier SG; Galarneau P
    Sci Rep; 2018 Jan; 8(1):1418. PubMed ID: 29362423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.
    Yu JS; Kim I; Kim JS; Jo J; Larsen-Olsen TT; Søndergaard RR; Hösel M; Angmo D; Jørgensen M; Krebs FC
    Nanoscale; 2012 Sep; 4(19):6032-40. PubMed ID: 22915093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling formation of silver/carbon nanotube networks for highly conductive film surface.
    Dong RX; Liu CT; Huang KC; Chiu WY; Ho KC; Lin JJ
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1449-55. PubMed ID: 22301712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Healable and Foldable Carbon Nanotube/Wax Conductive Composite.
    Chen TH; Yeh YC; Liao YC
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24217-24223. PubMed ID: 29931978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties.
    Zhang Q; Zhang F; Xu X; Zhou C; Lin D
    ACS Nano; 2018 Feb; 12(2):1096-1106. PubMed ID: 29328672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selectively Metalizable Low-Temperature Cofired Ceramic for Three-Dimensional Electronics via Hybrid Additive Manufacturing.
    Wang P; Li J; Wang G; Hai Y; He L; Yu Y; Wang X; Chen M; Xu B
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28060-28073. PubMed ID: 35686850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers.
    Jo Y; Kim JY; Kim SY; Seo YH; Jang KS; Lee SY; Jung S; Ryu BH; Kim HS; Park JU; Choi Y; Jeong S
    Nanoscale; 2017 Apr; 9(16):5072-5084. PubMed ID: 28181617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability.
    Manapat JZ; Mangadlao JD; Tiu BD; Tritchler GC; Advincula RC
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10085-10093. PubMed ID: 28230346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic Patterning for 3D Embedded Electrically Conductive Wire in Stereolithography.
    Yunus DE; Sohrabi S; He R; Shi W; Liu Y
    J Micromech Microeng; 2017 Apr; 27(4):. PubMed ID: 30344375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical Resistivity of 3D-Printed Polymer Elements.
    Stankevich S; Sevcenko J; Bulderberga O; Dutovs A; Erts D; Piskunovs M; Ivanovs V; Ivanov V; Aniskevich A
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography.
    Kowalska A; Banasiak R; Romanowski A; Sankowski D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
    Emon MO; Choi JW
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks.
    Zheng Y; Wang R; Dong X; Wu L; Zhang X
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28103-28111. PubMed ID: 30052027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fragmented carbon nanotube macrofilms as adhesive conductors for lithium-ion batteries.
    Cao Z; Wei B
    ACS Nano; 2014 Mar; 8(3):3049-59. PubMed ID: 24564355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application.
    Hu CF; Wang JY; Liu YC; Tsai MH; Fang W
    Nanotechnology; 2013 Nov; 24(44):444006. PubMed ID: 24113135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.