BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28956210)

  • 21. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
    Ferreira TH; Gentile A; Vilela RD; Costa GG; Dias LI; Endres L; Menossi M
    PLoS One; 2012; 7(10):e46703. PubMed ID: 23071617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing.
    Dong Z; Zhang J; Zhu Q; Zhao L; Sui S; Li Z; Zhang Y; Wang H; Tian D; Zhao Y
    Genes Genomics; 2018 Mar; 40(3):305-314. PubMed ID: 29892798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Wang T; Chen L; Zhao M; Tian Q; Zhang WH
    BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lupenone, a wonder chemical obtained from Euphorbia segetalis to boost affinity for the transcriptional factor escalating drought-tolerance in Solanum Lycopersicum: A cutting-edge computational biology approach.
    Debnath S; Alqahtani T; Alqahtani A; Alharbi HM; Akash S
    PLoS One; 2023; 18(11):e0281293. PubMed ID: 37939107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites.
    Chen H; Chen X; Chen D; Li J; Zhang Y; Wang A
    BMC Plant Biol; 2015 Jun; 15():132. PubMed ID: 26048292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes.
    Wang Z; Li N; Yu Q; Wang H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites).
    Hou Y; Jiang F; Zheng X; Wu Z
    BMC Plant Biol; 2019 Mar; 19(1):100. PubMed ID: 30866807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the miRNA expression profile involved in the tomato spotted wilt orthotospovirus-pepper interaction.
    Tao H; Jia Z; Gao X; Gui M; Li Y; Liu Y
    Virus Res; 2022 Apr; 312():198710. PubMed ID: 35183573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica.
    Li B; Qin Y; Duan H; Yin W; Xia X
    J Exp Bot; 2011 Jul; 62(11):3765-79. PubMed ID: 21511902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.
    Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK
    Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum).
    Din M; Barozai MY
    Gene; 2014 Feb; 535(2):198-203. PubMed ID: 24315821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH; Nadarajah K; Divate MD; Wickneswari R
    BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice.
    Xia H; Yu S; Kong D; Xiong J; Ma X; Chen L; Luo L
    BMC Genomics; 2020 Mar; 21(1):232. PubMed ID: 32171232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance.
    Wu Q; Hu Y; Sprague SA; Kakeshpour T; Park J; Nakata PA; Cheng N; Hirschi KD; White FF; Park S
    Biochem Biophys Res Commun; 2017 Sep; 491(4):1034-1039. PubMed ID: 28780355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and functional analysis of novel and conserved microRNAs in tomato.
    Luan Y; Wang W; Liu P
    Mol Biol Rep; 2014 Aug; 41(8):5385-94. PubMed ID: 24844213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y; Li L; Tang S; Liu J; Zhang H; Zhi H; Jia G; Diao X
    BMC Genet; 2016 Apr; 17():57. PubMed ID: 27068810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Tomato microRNAs in Late Response to
    Olmo R; Quijada NM; Morán-Diez ME; Hermosa R; Monte E
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress.
    Ren Y; Chen L; Zhang Y; Kang X; Zhang Z; Wang Y
    Funct Integr Genomics; 2012 Jun; 12(2):327-39. PubMed ID: 22415631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing.
    Eldem V; Çelikkol Akçay U; Ozhuner E; Bakır Y; Uranbey S; Unver T
    PLoS One; 2012; 7(12):e50298. PubMed ID: 23227166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.