These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28956314)

  • 1. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling.
    Gambardella J; Trimarco B; Iaccarino G; Santulli G
    Adv Exp Med Biol; 2018; 1067():373-385. PubMed ID: 28956314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of altered Ca²⁺ handling in heart failure.
    Luo M; Anderson ME
    Circ Res; 2013 Aug; 113(6):690-708. PubMed ID: 23989713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure.
    Mora MT; Ferrero JM; Romero L; Trenor B
    PLoS One; 2017; 12(11):e0187739. PubMed ID: 29117223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irregular rhythm adversely influences calcium handling in ventricular myocardium: implications for the interaction between heart failure and atrial fibrillation.
    Ling LH; Khammy O; Byrne M; Amirahmadi F; Foster A; Li G; Zhang L; dos Remedios C; Chen C; Kaye DM
    Circ Heart Fail; 2012 Nov; 5(6):786-93. PubMed ID: 23014130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes.
    Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J
    J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced Ca2+ release.
    Li S; Cheng H; Tomaselli GF; Li RA
    Heart Rhythm; 2014 Jan; 11(1):133-40. PubMed ID: 24096168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure.
    Kohlhaas M; Maack C
    Trends Cardiovasc Med; 2011 Apr; 21(3):69-73. PubMed ID: 22626245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of cardiac contractility after long-term therapy with oxypurinol in post-ischemic heart failure in mice.
    Tan Z; Dai T; Zhong X; Tian Y; Leppo MK; Gao WD
    Eur J Pharmacol; 2009 Oct; 621(1-3):71-7. PubMed ID: 19737552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Excitation-Contraction coupling and intracellular calcium cycling in failing hearts].
    Okuda S; Yano M
    Clin Calcium; 2013 Apr; 23(4):471-80. PubMed ID: 23545736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force development and intracellular Ca
    Li Z; Singh S; Suryavanshi SV; Ding W; Shen X; Wijaya CS; Gao WD; McConnell BK
    Eur J Pharmacol; 2017 Jul; 807():117-126. PubMed ID: 28428008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of age on cardiac excitation-contraction coupling.
    Fares E; Howlett SE
    Clin Exp Pharmacol Physiol; 2010 Jan; 37(1):1-7. PubMed ID: 19671063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men.
    Itzhaki I; Schiller J; Beyar R; Satin J; Gepstein L
    Ann N Y Acad Sci; 2006 Oct; 1080():207-15. PubMed ID: 17132785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel aspects of excitation-contraction coupling in heart failure.
    Neef S; Maier LS
    Basic Res Cardiol; 2013 Jul; 108(4):360. PubMed ID: 23740218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epac in cardiac calcium signaling.
    Ruiz-Hurtado G; Morel E; Domínguez-Rodríguez A; Llach A; Lezoualc'h F; Benitah JP; Gomez AM
    J Mol Cell Cardiol; 2013 May; 58():162-71. PubMed ID: 23220153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death.
    Tribulova N; Seki S; Radosinska J; Kaplan P; Babusikova E; Knezl V; Mochizuki S
    Can J Physiol Pharmacol; 2009 Dec; 87(12):1120-9. PubMed ID: 20029549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous force and Ca
    Sun Z; Lu K; Kamla C; Kameritsch P; Seidel T; Dendorfer A
    Commun Biol; 2024 Feb; 7(1):220. PubMed ID: 38388802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation.
    Ji YC; Gray RA; Fenton FH
    PLoS One; 2015; 10(8):e0135699. PubMed ID: 26317204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium.
    Kemi OJ; Wisløff U
    Acta Physiol (Oxf); 2010 Aug; 199(4):425-39. PubMed ID: 20353489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium release microdomains and mitochondria.
    Kohlhaas M; Maack C
    Cardiovasc Res; 2013 May; 98(2):259-68. PubMed ID: 23417042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure.
    Li H; Lichter JG; Seidel T; Tomaselli GF; Bridge JH; Sachse FB
    Circ Heart Fail; 2015 Nov; 8(6):1105-14. PubMed ID: 26294422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.