These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Intracellular Na⁺ and cardiac metabolism. Bay J; Kohlhaas M; Maack C J Mol Cell Cardiol; 2013 Aug; 61():20-7. PubMed ID: 23727097 [TBL] [Abstract][Full Text] [Related]
25. [Effect of carvedilol on ryanodine receptor in heart failure]. Li R; Yi QJ; Qian YR; Liu XY Zhonghua Er Ke Za Zhi; 2005 Aug; 43(8):603-7. PubMed ID: 16191273 [TBL] [Abstract][Full Text] [Related]
26. [Reverse remodeling of the intracellular Ca(2+)-homeostasis: new concepts of pathophysiology and therapy of heart failure]. Brixius K; Frank KF; Bölck B; Hoyer F; Schwinger RH Wien Med Wochenschr; 2006 Apr; 156(7-8):209-15. PubMed ID: 16823538 [TBL] [Abstract][Full Text] [Related]
27. Cellular mechanism underlying burn serum-generated bidirectional regulation of excitation-contraction coupling in isolated rat cardiomyocytes. Luo X; Deng J; Liu N; Zhang C; Huang Q; Liu J Shock; 2011 Apr; 35(4):388-95. PubMed ID: 21063240 [TBL] [Abstract][Full Text] [Related]
28. Ca(2+)-free, high-Ca2+ coronary perfusion suppresses contractility and excitation-contraction coupling energy. Araki J; Takaki M; Namba T; Mori M; Suga H Am J Physiol; 1995 Mar; 268(3 Pt 2):H1061-70. PubMed ID: 7900860 [TBL] [Abstract][Full Text] [Related]
29. Integrated Ca2+ management in cardiac myocytes. Shannon TR; Bers DM Ann N Y Acad Sci; 2004 May; 1015():28-38. PubMed ID: 15201147 [TBL] [Abstract][Full Text] [Related]
30. Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. Cooper PJ; Soeller C; Cannell MB J Mol Cell Cardiol; 2010 Dec; 49(6):911-7. PubMed ID: 20430038 [TBL] [Abstract][Full Text] [Related]
31. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Nader M Eur J Pharmacol; 2019 Sep; 858():172491. PubMed ID: 31233748 [TBL] [Abstract][Full Text] [Related]
33. Cardiac sodium transport and excitation-contraction coupling. Aronsen JM; Swift F; Sejersted OM J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049 [TBL] [Abstract][Full Text] [Related]
34. Ca Treves S; Jungbluth H; Voermans N; Muntoni F; Zorzato F Semin Cell Dev Biol; 2017 Apr; 64():201-212. PubMed ID: 27427513 [TBL] [Abstract][Full Text] [Related]
35. Physiological and pathological modulation of ryanodine receptor function in cardiac muscle. Eisner DA; Díaz ME; O'Neill SC; Trafford AW Cell Calcium; 2004 Jun; 35(6):583-9. PubMed ID: 15110148 [TBL] [Abstract][Full Text] [Related]
36. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Dewenter M; von der Lieth A; Katus HA; Backs J Circ Res; 2017 Sep; 121(8):1000-1020. PubMed ID: 28963192 [TBL] [Abstract][Full Text] [Related]
37. Super-resolution imaging of EC coupling protein distribution in the heart. Soeller C; Baddeley D J Mol Cell Cardiol; 2013 May; 58():32-40. PubMed ID: 23159441 [TBL] [Abstract][Full Text] [Related]
38. The possible role of calcium in excitation-contraction coupling of heart muscle. WINEGRAD S Circulation; 1961; 24():523-9. PubMed ID: 13831367 [No Abstract] [Full Text] [Related]
39. Genetic modulation of the SERCA activity does not affect the Ca(2+) leak from the cardiac sarcoplasmic reticulum. Morimoto S; Hongo K; Kusakari Y; Komukai K; Kawai M; O-Uchi J; Nakayama H; Asahi M; Otsu K; Yoshimura M; Kurihara S Cell Calcium; 2014 Jan; 55(1):17-23. PubMed ID: 24290743 [TBL] [Abstract][Full Text] [Related]
40. Subcellular Remodeling of the T-Tubule Membrane System: The Limits of Myocardial Recovery Revealed? Rame JE; Lavandero S Circulation; 2017 Apr; 135(17):1646-1650. PubMed ID: 28438805 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]