These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 28956314)
41. Studies on the mechanism of the excitation-contraction coupling in cardiac muscle, with special reference to the caffeine-contracture. SUZUKI K Jpn J Physiol; 1962 Apr; 12():186-99. PubMed ID: 13918601 [No Abstract] [Full Text] [Related]
42. Channel surfing: new insights into plasticity of excitation-contraction coupling. Louch WE J Physiol; 2019 Apr; 597(8):2119-2120. PubMed ID: 30854650 [No Abstract] [Full Text] [Related]
43. New insights into heart failure during this challenging time. Douard M J Physiol; 2021 Jul; 599(13):3263-3265. PubMed ID: 33963562 [No Abstract] [Full Text] [Related]
44. Advances in the understanding of excitation-contraction coupling: the pulsing quest for drugs against heart failure and arrhythmias. Kansakar U; Varzideh F; Jankauskas SS; Gambardella J; Trimarco B; Santulli G Eur Heart J Cardiovasc Pharmacother; 2021 Nov; 7(6):e91-e93. PubMed ID: 34498676 [No Abstract] [Full Text] [Related]
46. The significance of calcium ions in cardiac excitation and contraction. NAYLER WG Am Heart J; 1963 Mar; 65():404-11. PubMed ID: 13937796 [No Abstract] [Full Text] [Related]
47. Multiscale imaging of the human heart: Building the foundation for human systems physiology and translational medicine. Efimov IR; Fedorov VV; Glukhov A; Lou Q; Ambrosi C; Janks D; Hucker WJ; Kurian T; Schuessler RB; Moazami N Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5177-80. PubMed ID: 21095821 [TBL] [Abstract][Full Text] [Related]
48. Cellular basis for age-related differences in cardiac excitation-contraction coupling. Artman M; Henry G; Coetzee WA Prog Pediatr Cardiol; 2000 Sep; 11(3):185-194. PubMed ID: 10978711 [TBL] [Abstract][Full Text] [Related]
49. Think beyond the cell: Can we [tissue] engineer a solution to heart failure? Han JJ; Atluri P J Thorac Cardiovasc Surg; 2018 Jul; 156(1):227-228. PubMed ID: 29510938 [No Abstract] [Full Text] [Related]
50. Editorial: Evolving Picture of Calcium Handling in Cardiac Disease. Ruiz-Hurtado G; Rueda A; Pereira L; Fernández-Velasco M Front Physiol; 2020; 11():1013. PubMed ID: 33013442 [No Abstract] [Full Text] [Related]
51. Editorial: Advances and Current Challenges in Calcium Signaling Within the Cardiovascular System. Berra-Romani R; Guerra G; Moccia F Front Physiol; 2021; 12():696315. PubMed ID: 34366887 [No Abstract] [Full Text] [Related]
52. A PRELIMINARY NOTE ON EXCITATION-CONTRACTION COUPLING. Csapo A; Suzuki T Proc Natl Acad Sci U S A; 1957 Mar; 43(3):278-81. PubMed ID: 16590015 [No Abstract] [Full Text] [Related]
53. Correction: The relationship between form and function throughout the history of excitation-contraction coupling. Franzini-Armstrong C J Gen Physiol; 2018 Feb; 150(2):369. PubMed ID: 29358187 [No Abstract] [Full Text] [Related]
57. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Dridi H; Kushnir A; Zalk R; Yuan Q; Melville Z; Marks AR Nat Rev Cardiol; 2020 Nov; 17(11):732-747. PubMed ID: 32555383 [TBL] [Abstract][Full Text] [Related]
58. The relationship between form and function throughout the history of excitation-contraction coupling. Franzini-Armstrong C J Gen Physiol; 2018 Feb; 150(2):189-210. PubMed ID: 29317466 [TBL] [Abstract][Full Text] [Related]
59. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Dewenter M; von der Lieth A; Katus HA; Backs J Circ Res; 2017 Sep; 121(8):1000-1020. PubMed ID: 28963192 [TBL] [Abstract][Full Text] [Related]
60. The role of phospholamban and GSK3 in regulating rodent cardiac SERCA function. Hamstra SI; Whitley KC; Baranowski RW; Kurgan N; Braun JL; Messner HN; Fajardo VA Am J Physiol Cell Physiol; 2020 Oct; 319(4):C694-C699. PubMed ID: 32755452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]