BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28956335)

  • 21. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span.
    Patel NS; Klett J; Pilarzyk K; Lee DI; Kass D; Menniti FS; Kelly MP
    Neurobiol Aging; 2018 May; 65():217-234. PubMed ID: 29505961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells.
    Diederen RM; La Heij EC; Markerink-van Ittersum M; Kijlstra A; Hendrikse F; de Vente J
    Br J Ophthalmol; 2007 Mar; 91(3):379-84. PubMed ID: 16943225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells.
    Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M
    J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468.
    Saravani R; Karami-Tehrani F; Hashemi M; Aghaei M; Edalat R
    Cell Prolif; 2012 Jun; 45(3):199-206. PubMed ID: 22469131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a brain penetrant PDE9A inhibitor utilizing prospective design and chemical enablement as a rapid lead optimization strategy.
    Verhoest PR; Proulx-Lafrance C; Corman M; Chenard L; Helal CJ; Hou X; Kleiman R; Liu S; Marr E; Menniti FS; Schmidt CJ; Vanase-Frawley M; Schmidt AW; Williams RD; Nelson FR; Fonseca KR; Liras S
    J Med Chem; 2009 Dec; 52(24):7946-9. PubMed ID: 19919087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning.
    Lai B; Li M; Hu W; Li W; Gan WB
    Dev Neurobiol; 2018 Sep; 78(9):859-872. PubMed ID: 30022611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease.
    Domek-Łopacińska KU; Strosznajder JB
    Mol Neurobiol; 2010 Jun; 41(2-3):129-37. PubMed ID: 20213343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PDE9 inhibition promotes proliferation of neural stem cells via cGMP-PKG pathway following oxygen-glucose deprivation/reoxygenation injury in vitro.
    Huan X; Oumei C; Hongmei Q; Junxia Y; Xiaojiao M; Qingsong J
    Neurochem Int; 2020 Feb; 133():104630. PubMed ID: 31821840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line.
    Wunder F; Tersteegen A; Rebmann A; Erb C; Fahrig T; Hendrix M
    Mol Pharmacol; 2005 Dec; 68(6):1775-81. PubMed ID: 16150925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PDE inhibitors: a new approach to treat metabolic syndrome?
    Lugnier C
    Curr Opin Pharmacol; 2011 Dec; 11(6):698-706. PubMed ID: 22018840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porcine detrusor cyclic nucleotide phosphodiesterase isoenzymes: characterization and functional effects of various phosphodiesterase inhibitors in vitro.
    Truss MC; Uckert S; Stief CG; Schulz-Knappe P; Hess R; Forssmann WG; Jonas U
    Urology; 1995 May; 45(5):893-901. PubMed ID: 7747383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3.
    Beierwaltes WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1376-81. PubMed ID: 16449359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery.
    Sun J; Xiao Z; Haider A; Gebhard C; Xu H; Luo HB; Zhang HT; Josephson L; Wang L; Liang SH
    J Med Chem; 2021 Jun; 64(11):7083-7109. PubMed ID: 34042442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential.
    Zheng L; Zhou ZZ
    Eur J Med Chem; 2023 Nov; 259():115682. PubMed ID: 37536210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of phosphodiesterases in hippocampal synaptic plasticity.
    Sanderson TM; Sher E
    Neuropharmacology; 2013 Nov; 74():86-95. PubMed ID: 23357335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer's disease.
    Su T; Zhang T; Xie S; Yan J; Wu Y; Li X; Huang L; Luo HB
    Sci Rep; 2016 Feb; 6():21826. PubMed ID: 26911795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease.
    Kim GE; Kass DA
    Handb Exp Pharmacol; 2017; 243():249-269. PubMed ID: 27787716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodynamic, Hormonal, and Renal Actions of Phosphodiesterase-9 Inhibition in Experimental Heart Failure.
    Scott NJA; Rademaker MT; Charles CJ; Espiner EA; Richards AM
    J Am Coll Cardiol; 2019 Aug; 74(7):889-901. PubMed ID: 31416533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.