These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28956504)

  • 1. Joint modeling of longitudinal and survival data with a covariate subject to a limit of detection.
    Sattar A; Sinha SK
    Stat Methods Med Res; 2019 Feb; 28(2):486-502. PubMed ID: 28956504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Parametric Survival Model When a Covariate is Subject to Left-Censoring.
    Sattar A; Sinha SK; Morris NJ
    J Biom Biostat; 2012; Suppl 3(2):. PubMed ID: 24319625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frailty models for pneumonia to death with a left-censored covariate.
    Sattar A; Sinha SK; Wang XF; Li Y
    Stat Med; 2015 Jun; 34(14):2266-80. PubMed ID: 25728821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes.
    Alam K; Maity A; Sinha SK; Rizopoulos D; Sattar A
    Lifetime Data Anal; 2021 Jan; 27(1):64-90. PubMed ID: 33236257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study.
    Ngwa JS; Cabral HJ; Cheng DM; Gagnon DR; LaValley MP; Cupples LA
    BMC Med Res Methodol; 2021 Feb; 21(1):29. PubMed ID: 33568059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.
    Sattar A; Weissfeld LA; Molenberghs G
    Stat Med; 2011 Nov; 30(27):3167-80. PubMed ID: 21898524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint analysis of left-censored longitudinal biomarker and binary outcome via latent class modeling.
    Li M; Kong L
    Stat Med; 2018 Jun; 37(13):2162-2173. PubMed ID: 29611202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic nonlinear model for censored and mismeasured covariates in longitudinal models, with application in AIDS studies.
    Zhang H; Wong H; Wu L
    Stat Med; 2018 Jan; 37(1):167-178. PubMed ID: 29034494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A latent class approach for joint modeling of a time-to-event outcome and multiple longitudinal biomarkers subject to limits of detection.
    Li M; Lee CW; Kong L
    Stat Methods Med Res; 2020 Jun; 29(6):1624-1638. PubMed ID: 31469042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limits.
    Xie X; Xue X; Strickler HD
    Stat Med; 2018 Jan; 37(1):119-136. PubMed ID: 28980332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of longitudinal Gaussian data with missing data on the response variable].
    Jacqmin-Gadda H; Commenges D; Dartigues J
    Rev Epidemiol Sante Publique; 1999 Dec; 47(6):525-34. PubMed ID: 10673586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of missing data due to drop-outs on estimators for rates of change in longitudinal studies: a simulation study.
    Touloumi G; Babiker AG; Pocock SJ; Darbyshire JH
    Stat Med; 2001 Dec; 20(24):3715-28. PubMed ID: 11782028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features.
    Huang Y; Chen J
    Stat Med; 2016 Dec; 35(30):5666-5685. PubMed ID: 27592848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes.
    Li S
    Lifetime Data Anal; 2016 Jan; 22(1):145-60. PubMed ID: 25573223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semiparametric imputation approach for regression with censored covariate with application to an AMD progression study.
    Ding Y; Kong S; Kang S; Chen W
    Stat Med; 2018 Oct; 37(23):3293-3308. PubMed ID: 29845616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A joint model for longitudinal and survival data based on an AR(1) latent process.
    Bacci S; Bartolucci F; Pandolfi S
    Stat Methods Med Res; 2018 May; 27(5):1285-1311. PubMed ID: 27587589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian joint modeling for partially linear mixed-effects quantile regression of longitudinal and time-to-event data with limit of detection, covariate measurement errors and skewness.
    Zhang H; Huang Y
    J Biopharm Stat; 2021 May; 31(3):295-316. PubMed ID: 33284096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates.
    Tapsoba Jde D; Lee SM; Wang CY
    Stat Med; 2011 Feb; 30(3):232-49. PubMed ID: 21213341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies.
    Ganjali M; Baghfalaki T
    J Biopharm Stat; 2015; 25(5):1077-99. PubMed ID: 25372017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach.
    Faucett CL; Thomas DC
    Stat Med; 1996 Aug; 15(15):1663-85. PubMed ID: 8858789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.