BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28956533)

  • 1. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial.
    Das D; Zhang S; Noh I
    Biomed Mater; 2018 Jan; 13(2):025008. PubMed ID: 28956533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel.
    Das D; Bang S; Zhang S; Noh I
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29135939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins.
    Perez RA; Kim HW
    J Biomed Mater Res A; 2013 Apr; 101(4):1103-12. PubMed ID: 23015482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compatibility study of alginate/keratin blend for biopolymer development.
    Gupta P; Nayak KK
    J Appl Biomater Funct Mater; 2015 Dec; 13(4):e332-9. PubMed ID: 26350347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of alginate-coated β-tricalcium phosphate fiber scaffold for cell culture.
    Kawamura S; Furuya K; Sasaki N; Takeoka Y; Aizawa M; Kanzawa N
    J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35433. PubMed ID: 38817048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.
    Ilie A; Ghiţulică C; Andronescu E; Cucuruz A; Ficai A
    Int J Pharm; 2016 Aug; 510(2):501-7. PubMed ID: 26784979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering.
    Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ
    Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue.
    Algul D; Sipahi H; Aydin A; Kelleci F; Ozdatli S; Yener FG
    Int J Biol Macromol; 2015 Aug; 79():363-9. PubMed ID: 25982954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics.
    Seidenstuecker M; Ruehe J; Suedkamp NP; Serr A; Wittmer A; Bohner M; Bernstein A; Mayr HO
    Acta Biomater; 2017 Mar; 51():433-446. PubMed ID: 28104468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation.
    Li J; He J; Huang Y; Li D; Chen X
    Carbohydr Polym; 2015 Jun; 123():208-16. PubMed ID: 25843852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of porous alginate scaffolds containing various amounts of octacalcium phosphate (OCP) crystals.
    Shiraishi N; Anada T; Honda Y; Masuda T; Sasaki K; Suzuki O
    J Mater Sci Mater Med; 2010 Mar; 21(3):907-14. PubMed ID: 19851838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbicidal gentamicin-alginate hydrogels.
    Kondaveeti S; Bueno PVA; Carmona-Ribeiro AM; Esposito F; Lincopan N; Sierakowski MR; Petri DFS
    Carbohydr Polym; 2018 Apr; 186():159-167. PubMed ID: 29455973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration.
    Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O
    Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine.
    Kondaveeti S; Cornejo DR; Petri DF
    Colloids Surf B Biointerfaces; 2016 Feb; 138():94-101. PubMed ID: 26674837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth.
    Amer W; Abdelouahdi K; Ramananarivo HR; Fihri A; El Achaby M; Zahouily M; Barakat A; Djessas K; Clark J; Solhy A
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():341-6. PubMed ID: 24411386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.
    Huq T; Salmieri S; Khan A; Khan RA; Le Tien C; Riedl B; Fraschini C; Bouchard J; Uribe-Calderon J; Kamal MR; Lacroix M
    Carbohydr Polym; 2012 Nov; 90(4):1757-63. PubMed ID: 22944444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of thermal, mechanical and physical properties of polyamide 12 composites via hybridization of ceramics for bone replacement.
    Abdullah AM; Mohamad D; Rahim TNAT; Akil HM; Rajion ZA
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():719-725. PubMed ID: 30889745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.