BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28956604)

  • 21. WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects.
    Guerriero G; Hausman JF; Ezcurra I
    Front Plant Sci; 2015; 6():1112. PubMed ID: 26734023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the WD40 domain of human PRPF19.
    Zhang Y; Li Y; Liang X; Zhu Z; Sun H; He H; Min J; Liao S; Liu Y
    Biochem Biophys Res Commun; 2017 Nov; 493(3):1250-1253. PubMed ID: 28962858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review).
    Zhang Z; Wang H; Yan M; Wang H; Zhang C
    Mol Med Rep; 2017 Jan; 15(1):3-11. PubMed ID: 27959411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the WD40-domain of human ATG16L1.
    Bajagic M; Archna A; Büsing P; Scrima A
    Protein Sci; 2017 Sep; 26(9):1828-1837. PubMed ID: 28685931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions.
    Jain BP; Pandey S
    Protein J; 2018 Oct; 37(5):391-406. PubMed ID: 30069656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Targets of Active Anticancer Compounds Derived from Marine Sources.
    Song X; Xiong Y; Qi X; Tang W; Dai J; Gu Q; Li J
    Mar Drugs; 2018 May; 16(5):. PubMed ID: 29786660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features.
    Chahar P; Kaushik M; Gill SS; Gakhar SK; Gopalan N; Datt M; Sharma A; Gill R
    PLoS One; 2015; 10(6):e0128507. PubMed ID: 26043001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation.
    Wu G; Lyapina S; Das I; Li J; Gurney M; Pauley A; Chui I; Deshaies RJ; Kitajewski J
    Mol Cell Biol; 2001 Nov; 21(21):7403-15. PubMed ID: 11585921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system.
    Sengupta S; Henry RW
    Biochim Biophys Acta; 2015 Oct; 1849(10):1289-97. PubMed ID: 26319102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skp1: Implications in cancer and SCF-oriented anti-cancer drug discovery.
    Hussain M; Lu Y; Liu YQ; Su K; Zhang J; Liu J; Zhou GB
    Pharmacol Res; 2016 Sep; 111():34-42. PubMed ID: 27238229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions.
    Zou XD; An K; Wu YD; Ye ZQ
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):41. PubMed ID: 29745845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of proteasome inhibitors in oncology and autoimmune diseases.
    Bennett MK; Kirk CJ
    Curr Opin Drug Discov Devel; 2008 Sep; 11(5):616-25. PubMed ID: 18729013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome.
    Tsuchiya H; Ohtake F; Arai N; Kaiho A; Yasuda S; Tanaka K; Saeki Y
    Mol Cell; 2017 May; 66(4):488-502.e7. PubMed ID: 28525741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel strategies to target the ubiquitin proteasome system in multiple myeloma.
    Lub S; Maes K; Menu E; De Bruyne E; Vanderkerken K; Van Valckenborgh E
    Oncotarget; 2016 Feb; 7(6):6521-37. PubMed ID: 26695547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysregulation of ubiquitin ligases in cancer.
    Qi J; Ronai ZA
    Drug Resist Updat; 2015 Nov; 23():1-11. PubMed ID: 26690337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacologic down-regulation of EZH2 suppresses bladder cancer in vitro and in vivo.
    Tang SH; Huang HS; Wu HU; Tsai YT; Chuang MJ; Yu CP; Huang SM; Sun GH; Chang SY; Hsiao PW; Yu DS; Cha TL
    Oncotarget; 2014 Nov; 5(21):10342-55. PubMed ID: 25431950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EZH2 in Bladder Cancer, a Promising Therapeutic Target.
    Martínez-Fernández M; Rubio C; Segovia C; López-Calderón FF; Dueñas M; Paramio JM
    Int J Mol Sci; 2015 Nov; 16(11):27107-32. PubMed ID: 26580594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional control and the ubiquitin-proteasome system.
    Leung A; Geng F; Daulny A; Collins G; Guzzardo P; Tansey WP
    Ernst Schering Found Symp Proc; 2008; (1):75-97. PubMed ID: 19198065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitin-specific proteases as cancer drug targets.
    Sippl W; Collura V; Colland F
    Future Oncol; 2011 May; 7(5):619-32. PubMed ID: 21568678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polycomb genes and cancer: time for clinical application?
    Crea F; Paolicchi E; Marquez VE; Danesi R
    Crit Rev Oncol Hematol; 2012 Aug; 83(2):184-93. PubMed ID: 22112692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.