BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28956817)

  • 1. Pathway Enrichment Analysis with Networks.
    Liu L; Wei J; Ruan J
    Genes (Basel); 2017 Sep; 8(10):. PubMed ID: 28956817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based Pathway Enrichment Analysis.
    Liu L; Ruan J
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2013; ():218-221. PubMed ID: 25327472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.
    Blatti C; Sinha S
    Bioinformatics; 2016 Jul; 32(14):2167-75. PubMed ID: 27153592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on gene set and pathway topology-based enrichment methods.
    Bayerlová M; Jung K; Kramer F; Klemm F; Bleckmann A; Beißbarth T
    BMC Bioinformatics; 2015 Oct; 16():334. PubMed ID: 26489510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending pathways based on gene lists using InterPro domain signatures.
    Hahne F; Mehrle A; Arlt D; Poustka A; Wiemann S; Beissbarth T
    BMC Bioinformatics; 2008 Jan; 9():3. PubMed ID: 18177498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network expansion and pathway enrichment analysis towards biologically significant findings from microarrays.
    Wu X; Huang H; Wei T; Pandey R; Reinhard C; Li SD; Chen JY
    J Integr Bioinform; 2012 Oct; 9(2):213. PubMed ID: 23079560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of functional modules using network topology and high-throughput data.
    Ulitsky I; Shamir R
    BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights.
    Dong X; Hao Y; Wang X; Tian W
    Sci Rep; 2016 Jan; 6():18871. PubMed ID: 26750448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women.
    He H; Cao S; Niu T; Zhou Y; Zhang L; Zeng Y; Zhu W; Wang YP; Deng HW
    PLoS One; 2016; 11(1):e0147475. PubMed ID: 26808152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes involved in the same pathways using a Hidden Markov Model-based approach.
    Senf A; Chen XW
    Bioinformatics; 2009 Nov; 25(22):2945-54. PubMed ID: 19720676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease.
    Li L; Wang Y; An L; Kong X; Huang T
    PLoS One; 2017; 12(8):e0182592. PubMed ID: 28787010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.
    Omranian N; Mueller-Roeber B; Nikoloski Z
    Mol Biosyst; 2012 Apr; 8(4):1121-7. PubMed ID: 22327945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.
    Zhang Y; Dai L; Liu Y; Zhang Y; Wang S
    PLoS One; 2017; 12(5):e0177017. PubMed ID: 28472169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian network expansion identifies new ROS and biofilm regulators.
    Hodges AP; Dai D; Xiang Z; Woolf P; Xi C; He Y
    PLoS One; 2010 Mar; 5(3):e9513. PubMed ID: 20209085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Genes Related to Uveitis by Utilization of the Random Walk with Restart Algorithm on a Protein-Protein Interaction Network.
    Lu S; Yan Y; Li Z; Chen L; Yang J; Zhang Y; Wang S; Liu L
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28505077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RWRNET: A Gene Regulatory Network Inference Algorithm Using Random Walk With Restart.
    Liu W; Sun X; Peng L; Zhou L; Lin H; Jiang Y
    Front Genet; 2020; 11():591461. PubMed ID: 33101398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.