BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28956817)

  • 21. A Markov random field model for network-based analysis of genomic data.
    Wei Z; Li H
    Bioinformatics; 2007 Jun; 23(12):1537-44. PubMed ID: 17483504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate multiple network alignment through context-sensitive random walk.
    Jeong H; Yoon BJ
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S7. PubMed ID: 25707987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculating the statistical significance of changes in pathway activity from gene expression data.
    Rahnenführer J; Domingues FS; Maydt J; Lengauer T
    Stat Appl Genet Mol Biol; 2004; 3():Article16. PubMed ID: 16646794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network legos: building blocks of cellular wiring diagrams.
    Murali TM; Rivera CG
    J Comput Biol; 2008 Sep; 15(7):829-44. PubMed ID: 18707557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Null diffusion-based enrichment for metabolomics data.
    Picart-Armada S; Fernández-Albert F; Vinaixa M; Rodríguez MA; Aivio S; Stracker TH; Yanes O; Perera-Lluna A
    PLoS One; 2017; 12(12):e0189012. PubMed ID: 29211807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Random forests-based differential analysis of gene sets for gene expression data.
    Hsueh HM; Zhou DW; Tsai CA
    Gene; 2013 Apr; 518(1):179-86. PubMed ID: 23219997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.
    Wang QL; Chen X; Zhang MH; Shen QH; Qin ZM
    Genet Mol Res; 2015 Dec; 14(4):16151-61. PubMed ID: 26662407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.
    Chen L; Zhang YH; Zheng M; Huang T; Cai YD
    Mol Genet Genomics; 2016 Dec; 291(6):2065-2079. PubMed ID: 27530612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses.
    Nguyen NT; Lindsey ML; Jin YF
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S18. PubMed ID: 26100218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finding directionality and gene-disease predictions in disease associations.
    Garcia-Albornoz M; Nielsen J
    BMC Syst Biol; 2015 Jul; 9():35. PubMed ID: 26168918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probabilistic biological network alignment.
    Todor A; Dobra A; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):109-21. PubMed ID: 23702548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization.
    Le DH; Kwon YK
    Comput Biol Chem; 2013 Jun; 44():1-8. PubMed ID: 23434623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.
    Chen W; Zhao W; Yang A; Xu A; Wang H; Cong M; Liu T; Wang P; You H
    Gene; 2017 Dec; 636():87-95. PubMed ID: 28919164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network-based functional enrichment.
    Poirel CL; Owens CC; Murali TM
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S14. PubMed ID: 22479706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways.
    Suresh NT; E R V; U K
    Comput Biol Chem; 2020 Oct; 88():107323. PubMed ID: 32653778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.