These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28956880)

  • 1. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage.
    Zhou J; Wang B
    Chem Soc Rev; 2017 Nov; 46(22):6927-6945. PubMed ID: 28956880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent electrochemical functions and future opportunities of hierarchically constructed metal-organic frameworks and covalent organic frameworks.
    Hara Y; Sakaushi K
    Nanoscale; 2021 Apr; 13(13):6341-6356. PubMed ID: 33885519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically active sites inside crystalline porous materials for energy storage and conversion.
    Kong L; Zhong M; Shuang W; Xu Y; Bu XH
    Chem Soc Rev; 2020 Apr; 49(8):2378-2407. PubMed ID: 32154522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity.
    Zhang Y; Riduan SN; Wang J
    Chemistry; 2017 Nov; 23(65):16419-16431. PubMed ID: 28766817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion.
    Li J; Jing X; Li Q; Li S; Gao X; Feng X; Wang B
    Chem Soc Rev; 2020 Jun; 49(11):3565-3604. PubMed ID: 32369058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage.
    Liu J; Song X; Zhang T; Liu S; Wen H; Chen L
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5612-5624. PubMed ID: 32452126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications.
    Zhang K; Kirlikovali KO; Varma RS; Jin Z; Jang HW; Farha OK; Shokouhimehr M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27821-27852. PubMed ID: 32469503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza-Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials.
    Peng H; Raya J; Richard F; Baaziz W; Ersen O; Ciesielski A; Samorì P
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19602-19609. PubMed ID: 32634276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries.
    Zhang L; Zhang X; Han D; Zhai L; Mi L
    Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent organic frameworks (COFs) for electrochemical applications.
    Zhao X; Pachfule P; Thomas A
    Chem Soc Rev; 2021 Jun; 50(12):6871-6913. PubMed ID: 33881422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.
    Guan BY; Yu XY; Wu HB; Lou XWD
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 28960488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications.
    Shanmugam M; Agamendran N; Sekar K; Natarajan TS
    Phys Chem Chem Phys; 2023 Nov; 25(44):30116-30144. PubMed ID: 37909363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage.
    Sanati S; Abazari R; Albero J; Morsali A; García H; Liang Z; Zou R
    Angew Chem Int Ed Engl; 2021 May; 60(20):11048-11067. PubMed ID: 32910529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Crystalline Materials Based on Tetrathiafulvalene and Its Analogues: Assembly, Charge Transfer, and Applications.
    Wang HY; Su J; Zuo JL
    Acc Chem Res; 2024 Jul; 57(13):1851-1869. PubMed ID: 38902854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review.
    Chen S; Yuan B; Liu G; Zhang D
    Front Chem; 2020; 8():601044. PubMed ID: 33330394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.
    Liang Z; Qu C; Guo W; Zou R; Xu Q
    Adv Mater; 2018 Sep; 30(37):e1702891. PubMed ID: 29164712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design strategies of covalent organic framework-based electrodes for supercapacitor application.
    Tao R; Yang T; Wang Y; Zhang J; Wu Z; Qiu L
    Chem Commun (Camb); 2023 Mar; 59(22):3175-3192. PubMed ID: 36810434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics.
    Souto M; Strutyński K; Melle-Franco M; Rocha J
    Chemistry; 2020 Aug; 26(48):10912-10935. PubMed ID: 32293769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latest advances in supercapacitors: from new electrode materials to novel device designs.
    Wang F; Wu X; Yuan X; Liu Z; Zhang Y; Fu L; Zhu Y; Zhou Q; Wu Y; Huang W
    Chem Soc Rev; 2017 Nov; 46(22):6816-6854. PubMed ID: 28868557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.