BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28956907)

  • 1. Toward Personalized Peptide-Based Cancer Nanovaccines: A Facile and Versatile Synthetic Approach.
    Kakwere H; Ingham ES; Allen R; Mahakian LM; Tam SM; Zhang H; Silvestrini MT; Lewis JS; Ferrara KW
    Bioconjug Chem; 2017 Nov; 28(11):2756-2771. PubMed ID: 28956907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis.
    Xu Z; Ramishetti S; Tseng YC; Guo S; Wang Y; Huang L
    J Control Release; 2013 Nov; 172(1):259-265. PubMed ID: 24004885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide.
    Lai C; Duan S; Ye F; Hou X; Li X; Zhao J; Yu X; Hu Z; Tang Z; Mo F; Yang X; Lu X
    Theranostics; 2018; 8(6):1723-1739. PubMed ID: 29556352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxic T lymphocytes responding to low dose TRP2 antigen are induced against B16 melanoma by liposome-encapsulated TRP2 peptide and CpG DNA adjuvant.
    Jérôme V; Graser A; Müller R; Kontermann RE; Konur A
    J Immunother; 2006; 29(3):294-305. PubMed ID: 16699372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model.
    Vasievich EA; Ramishetti S; Zhang Y; Huang L
    Mol Pharm; 2012 Feb; 9(2):261-8. PubMed ID: 22142394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-functional nanocomplex codelivery of Trp2 and R837 to activate melanoma-specific immunity.
    Ji Z; Tan Z; Li M; Tao J; Guan E; Du J; Hu Y
    Int J Pharm; 2020 May; 582():119310. PubMed ID: 32276088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy.
    Song H; Su Q; Shi W; Huang P; Zhang C; Zhang C; Liu Q; Wang W
    Acta Biomater; 2022 Mar; 141():398-407. PubMed ID: 35007785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response.
    Liang R; Xie J; Li J; Wang K; Liu L; Gao Y; Hussain M; Shen G; Zhu J; Tao J
    Biomaterials; 2017 Dec; 149():41-50. PubMed ID: 28992509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Origami Functions as a Self-Adjuvanted Nanovaccine Platform for Cancer Immunotherapy.
    Yip T; Qi X; Yan H; Chang Y
    ACS Nano; 2024 Feb; 18(5):4056-4067. PubMed ID: 38270089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses.
    Zeng Q; Jiang H; Wang T; Zhang Z; Gong T; Sun X
    J Control Release; 2015 Feb; 200():1-12. PubMed ID: 25540903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unimicellar hyperstars as multi-antigen cancer nanovaccines displaying clustered epitopes of immunostimulating peptides.
    Kakwere H; Ingham ES; Allen R; Mahakian LM; Tam SM; Zhang H; Silvestrini MT; Lewis JS; Ferrara KW
    Biomater Sci; 2018 Nov; 6(11):2850-2858. PubMed ID: 30229768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines.
    Hu H; Yang C; Zhang F; Li M; Tu Z; Mu L; Dawulieti J; Lao YH; Xiao Z; Yan H; Sun W; Shao D; Leong KW
    Adv Sci (Weinh); 2021 Aug; 8(15):2002020. PubMed ID: 34386315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-in-Oil Peptide Nanocarriers for Transcutaneous Cancer Vaccine Delivery against Melanoma.
    Wakabayashi R; Sakuragi M; Kozaka S; Tahara Y; Kamiya N; Goto M
    Mol Pharm; 2018 Mar; 15(3):955-961. PubMed ID: 29397746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax.
    Mansour M; Pohajdak B; Kast WM; Fuentes-Ortega A; Korets-Smith E; Weir GM; Brown RG; Daftarian P
    J Transl Med; 2007 Apr; 5():20. PubMed ID: 17451606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering Antigen Charge to Control Self-Assembly and Processing of Immune Signals During Cancer Vaccination.
    Tsai SJ; Amerman A; Jewell CM
    Front Immunol; 2020; 11():613830. PubMed ID: 33488621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of Polymeric Hybrid Micelles to Overcome Lymphatic and Intracellular Delivery Barriers in Cancer Immunotherapy.
    Li H; Li Y; Wang X; Hou Y; Hong X; Gong T; Zhang Z; Sun X
    Theranostics; 2017; 7(18):4383-4398. PubMed ID: 29158834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy.
    Xu J; Lv J; Zhuang Q; Yang Z; Cao Z; Xu L; Pei P; Wang C; Wu H; Dong Z; Chao Y; Wang C; Yang K; Peng R; Cheng Y; Liu Z
    Nat Nanotechnol; 2020 Dec; 15(12):1043-1052. PubMed ID: 33139933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy.
    Wang Q; Dong Z; Lou F; Yin Y; Zhang J; Wen H; Lu T; Wang Y
    Drug Deliv; 2022 Dec; 29(1):2029-2043. PubMed ID: 35766157
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Schmidt J; Guillaume P; Dojcinovic D; Karbach J; Coukos G; Luescher I
    J Biol Chem; 2017 Jul; 292(28):11840-11849. PubMed ID: 28536262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trp2 Peptide-Assembled Nanoparticles with Intrinsically Self-Chelating
    He Z; Jia H; Zheng M; Wang H; Yang W; Gao L; Zhang Z; Xue J; Xu B; Yang W; Xing G; Gao X; Gao F
    ACS Appl Bio Mater; 2021 Jul; 4(7):5707-5716. PubMed ID: 35006752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.