These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 28956927)

  • 1. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.
    Fang J; Wu Z; Cai C; Wang Q; Tang Y; Cheng F
    J Chem Inf Model; 2017 Nov; 57(11):2657-2671. PubMed ID: 28956927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico polypharmacology of natural products.
    Fang J; Liu C; Wang Q; Lin P; Cheng F
    Brief Bioinform; 2018 Nov; 19(6):1153-1171. PubMed ID: 28460068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches.
    Wu Z; Lu W; Yu W; Wang T; Li W; Liu G; Zhang H; Pang X; Huang J; Liu M; Cheng F; Tang Y
    Pharmacol Res; 2018 Mar; 129():400-413. PubMed ID: 29133212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems pharmacology strategies for anticancer drug discovery based on natural products.
    Luo F; Gu J; Chen L; Xu X
    Mol Biosyst; 2014 Jul; 10(7):1912-7. PubMed ID: 24802653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of chemical mechanism of action via an improved network-based inference method.
    Wu Z; Lu W; Wu D; Luo A; Bian H; Li J; Li W; Liu G; Huang J; Cheng F; Tang Y
    Br J Pharmacol; 2016 Dec; 173(23):3372-3385. PubMed ID: 27646592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and Systems Pharmacology 3. Network-Based Identification of New Targets for Natural Products Enables Potential Uses in Aging-Associated Disorders.
    Fang J; Gao L; Ma H; Wu Q; Wu T; Wu J; Wang Q; Cheng F
    Front Pharmacol; 2017; 8():747. PubMed ID: 29093681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Oncology Drug Repositioning and Polypharmacology.
    Cheng F
    Methods Mol Biol; 2019; 1878():243-261. PubMed ID: 30378081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.
    Fang J; Cai C; Wang Q; Lin P; Zhao Z; Cheng F
    CPT Pharmacometrics Syst Pharmacol; 2017 Mar; 6(3):177-187. PubMed ID: 28294568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editorial; Natural Product Inhibitors of Enzymatic Targets in Anticancer Drug Discovery - Part II.
    Scotti L; Scotti MT
    Curr Protein Pept Sci; 2018 Feb; 19(4):342. PubMed ID: 29493446
    [No Abstract]   [Full Text] [Related]  

  • 10. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism.
    Mak L; Liggi S; Tan L; Kusonmano K; Rollinger JM; Koutsoukas A; Glen RC; Kirchmair J
    Curr Pharm Des; 2013; 19(4):532-77. PubMed ID: 23016852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018.
    Liu W; Li Q; Hu J; Wang H; Xu F; Bian Q
    Bioorg Med Chem; 2019 Dec; 27(23):115150. PubMed ID: 31635893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products.
    Kibble M; Saarinen N; Tang J; Wennerberg K; Mäkelä S; Aittokallio T
    Nat Prod Rep; 2015 Aug; 32(8):1249-66. PubMed ID: 26030402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.
    Gogoi B; Gogoi D; Silla Y; Kakoti BB; Bhau BS
    Mol Biosyst; 2017 Jan; 13(2):406-416. PubMed ID: 28070575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rectifying cancer drug discovery through network pharmacology.
    Azmi AS; Mohammad RM
    Future Med Chem; 2014 Apr; 6(5):529-39. PubMed ID: 24649956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in translational pharmacological investigations in identifying and validating molecular targets of natural product anticancer agents.
    Yu J; Nag SA; Zhang R
    Curr Cancer Drug Targets; 2013 Jun; 13(5):596-609. PubMed ID: 23597194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and systems pharmacology 4. Network-based analysis of drug pleiotropy on coronary artery disease.
    Fang J; Cai C; Chai Y; Zhou J; Huang Y; Gao L; Wang Q; Cheng F
    Eur J Med Chem; 2019 Jan; 161():192-204. PubMed ID: 30359818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine natural products for multi-targeted cancer treatment: A future insight.
    Kumar MS; Adki KM
    Biomed Pharmacother; 2018 Sep; 105():233-245. PubMed ID: 29859466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of novel drug targets and their functions using phenotypic screening of natural products.
    Chang J; Kwon HJ
    J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):221-31. PubMed ID: 26364198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining Natural Products with Anticancer Biological Activity through a Systems Biology Approach.
    Theofylaktou D; Takan I; Karakülah G; Biz GM; Zanni V; Pavlopoulou A; Georgakilas AG
    Oxid Med Cell Longev; 2021; 2021():9993518. PubMed ID: 34422220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.