These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28957080)

  • 1. Fast response of photorefraction in lithium niobate microresonators.
    Jiang H; Luo R; Liang H; Chen X; Chen Y; Lin Q
    Opt Lett; 2017 Sep; 42(17):3267-3270. PubMed ID: 28957080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.
    Sun X; Liang H; Luo R; Jiang WC; Zhang XC; Lin Q
    Opt Express; 2017 Jun; 25(12):13504-13516. PubMed ID: 28788894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping.
    Saeed S; Liu H; Xue L; Zheng D; Liu S; Chen S; Kong Y; Rupp R; Xu J
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices.
    Kong Y; Bo F; Wang W; Zheng D; Liu H; Zhang G; Rupp R; Xu J
    Adv Mater; 2020 Jan; 32(3):e1806452. PubMed ID: 31282003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals.
    Liu F; Kong Y; Li W; Liu H; Liu S; Chen S; Zhang X; Rupp R; Xu J
    Opt Lett; 2010 Jan; 35(1):10-2. PubMed ID: 20664656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals.
    Zheng D; Kong Y; Liu S; Chen M; Chen S; Zhang L; Rupp R; Xu J
    Sci Rep; 2016 Feb; 6():20308. PubMed ID: 26837261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Q chaotic lithium niobate microdisk cavity.
    Wang L; Wang C; Wang J; Bo F; Zhang M; Gong Q; Lončar M; Xiao YF
    Opt Lett; 2018 Jun; 43(12):2917-2920. PubMed ID: 29905723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals.
    Xu J; Zhang G; Li F; Zhang X; Sun Q; Liu S; Song F; Kong Y; Chen X; Qiao H; Yao J; Lijuan Z
    Opt Lett; 2000 Jan; 25(2):129-31. PubMed ID: 18059805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Ultraviolet Damage Resistance in Magnesium Doped Lithium Niobate Crystals through Zirconium Co-Doping.
    Kong T; Luo Y; Wang W; Kong H; Fan Z; Liu H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33670015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved ultraviolet photorefractive properties of vanadium-doped lithium niobate crystals.
    Dong Y; Liu S; Li W; Kong Y; Chen S; Xu J
    Opt Lett; 2011 May; 36(10):1779-81. PubMed ID: 21593888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion engineered high quality lithium niobate microring resonators.
    He Y; Liang H; Luo R; Li M; Lin Q
    Opt Express; 2018 Jun; 26(13):16315-16322. PubMed ID: 30119464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.
    Wang J; Bo F; Wan S; Li W; Gao F; Li J; Zhang G; Xu J
    Opt Express; 2015 Sep; 23(18):23072-8. PubMed ID: 26368411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorefraction-induced Bragg scattering in cryogenic lithium niobate ring resonators.
    Xu Y; Sayem AA; Zou CL; Fan L; Cheng R; Tang HX
    Opt Lett; 2021 Jan; 46(2):432-435. PubMed ID: 33449046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral Engineering of Optical Microresonators in Anisotropic Lithium Niobate Crystal.
    Zhang K; Chen Y; Sun W; Chen Z; Feng H; Wang C
    Adv Mater; 2024 Apr; 36(17):e2308840. PubMed ID: 38181412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdisk resonators with lithium-niobate film on silicon substrate.
    Zhang L; Zheng D; Li W; Bo F; Gao F; Kong Y; Zhang G; Xu J
    Opt Express; 2019 Nov; 27(23):33662-33669. PubMed ID: 31878429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining.
    Lin J; Xu Y; Fang Z; Wang M; Song J; Wang N; Qiao L; Fang W; Cheng Y
    Sci Rep; 2015 Jan; 5():8072. PubMed ID: 25627294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-optic effects in on-chip lithium niobate microdisk resonators.
    Wang J; Zhu B; Hao Z; Bo F; Wang X; Gao F; Li Y; Zhang G; Xu J
    Opt Express; 2016 Sep; 24(19):21869-79. PubMed ID: 27661922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photorefraction of molybdenum-doped lithium niobate crystals.
    Tian T; Kong Y; Liu S; Li W; Wu L; Chen S; Xu J
    Opt Lett; 2012 Jul; 37(13):2679-81. PubMed ID: 22743493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators.
    Minet Y; Reis L; Szabados J; Werner CS; Zappe H; Buse K; Breunig I
    Opt Express; 2020 Feb; 28(3):2939-2947. PubMed ID: 32121971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast photorefractive response of vanadium-doped lithium niobate in the visible region.
    Dong Y; Liu S; Kong Y; Chen S; Rupp R; Xu J
    Opt Lett; 2012 Jun; 37(11):1841-3. PubMed ID: 22660047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.