These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28957221)

  • 1. Using back focal plane interferometry to probe the influence of Zernike aberrations in optical tweezers.
    Dixon TF; Russell LW; Andres-Arroyo A; Reece PJ
    Opt Lett; 2017 Aug; 42(15):2968-2971. PubMed ID: 28957221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous calibration of optical tweezers spring constant and position detector response.
    Le Gall A; Perronet K; Dulin D; Villing A; Bouyer P; Visscher K; Westbrook N
    Opt Express; 2010 Dec; 18(25):26469-74. PubMed ID: 21164997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.
    Farré A; Marsà F; Montes-Usategui M
    Opt Express; 2012 May; 20(11):12270-91. PubMed ID: 22714216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D calibration of microsphere position in optical tweezers using the back-focal-plane interferometry method.
    Li W; Zhang H; Hu M; Zhu Q; Su H; Li N; Hu H
    Opt Express; 2021 Sep; 29(20):32271-32284. PubMed ID: 34615302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer.
    Galinskiy I; Isaksson O; Salgado IR; Hautefeuille M; Mehlig B; Hanstorp D
    Opt Express; 2015 Oct; 23(21):27071-84. PubMed ID: 26480368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap.
    Mondal A; Roy B; Banerjee A
    Opt Express; 2015 Mar; 23(6):8021-8. PubMed ID: 25837140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle tracking by full-field complex wavefront subtraction in digital holography microscopy.
    Miccio L; Memmolo P; Merola F; Fusco S; Embrione V; Paciello A; Ventre M; Netti PA; Ferraro P
    Lab Chip; 2014 Mar; 14(6):1129-34. PubMed ID: 24463986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved axial trapping with holographic optical tweezers.
    Pollari R; Milstein JN
    Opt Express; 2015 Nov; 23(22):28857-67. PubMed ID: 26561154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic coefficient of a single polymer chain by using Brownian dynamics analysis.
    Horinaka J; Maniwa T; Oharada K; Takigawa T
    J Chem Phys; 2007 Aug; 127(6):064904. PubMed ID: 17705624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry.
    Roy B; Pal SB; Haldar A; Gupta RK; Ghosh N; Banerjee A
    Opt Express; 2012 Apr; 20(8):8317-28. PubMed ID: 22513543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of a colloidal particle in an optical trap.
    Lukić B; Jeney S; Sviben Z; Kulik AJ; Florin EL; Forró L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011112. PubMed ID: 17677415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and calibrating nonlinearity and crosstalk in back focal plane interferometry for three-dimensional position detection.
    Cheng P; Jhiang SM; Menq CH
    Opt Lett; 2017 Oct; 42(19):3948-3951. PubMed ID: 28957168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic optical tweezers combined with back-focal-plane displacement detection.
    Marsà F; Farré A; Martín-Badosa E; Montes-Usategui M
    Opt Express; 2013 Dec; 21(25):30282-94. PubMed ID: 24514607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Back-focal-plane position detection with extended linear range for photonic force microscopy.
    Martínez IA; Petrov D
    Appl Opt; 2012 Sep; 51(25):5973-7. PubMed ID: 22945141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structured Back Focal Plane Interferometry (SBFPI).
    Upadhya A; Zheng Y; Li L; Lee WM
    Sci Rep; 2019 Dec; 9(1):20273. PubMed ID: 31889054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical traps with geometric aberrations.
    Roichman Y; Waldron A; Gardel E; Grier DG
    Appl Opt; 2006 May; 45(15):3425-9. PubMed ID: 16708086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.