These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28957251)

  • 1. CW-to-pulse conversion using temporal Talbot array illuminators.
    Fernández-Pousa CR; Maram R; Azaña J
    Opt Lett; 2017 Jul; 42(13):2427-2430. PubMed ID: 28957251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear time-lens with improved power efficiency through a discrete multilevel pump.
    Fernández MP; Romero Cortés L; Konatham SR; Crockett B; Bulus-Rossini LA; Costanzo-Caso PA; Azaña J
    Opt Lett; 2020 Jul; 45(13):3557-3560. PubMed ID: 32630897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating nonlinear propagation impairments of ultrashort pulses by fractional temporal self-imaging.
    Seghilani M; Maram R; Azaña J
    Opt Lett; 2017 Feb; 42(4):879-882. PubMed ID: 28198888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.
    Lee JH; Chang Y; Han YG; Kim S; Lee S
    Opt Express; 2004 Aug; 12(17):3900-5. PubMed ID: 19483924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical square-pulse generation and multiplication at 1.5 mum by use of a novel class of fiber Bragg gratings.
    Marano M; Longhi S; Laporta P; Belmonte M; Agogliati B
    Opt Lett; 2001 Oct; 26(20):1615-7. PubMed ID: 18049681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 40-GHz pulse-train generation at 1.5 mum with a chirped fiber grating as a frequency multiplier.
    Longhi S; Marano M; Laporta P; Svelto O; Belmonte M; Agogliati B; Arcangeli L; Pruneri V; Zervas MN; Ibsen M
    Opt Lett; 2000 Oct; 25(19):1481-3. PubMed ID: 18066255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Talbot effect of optical dark pulse trains.
    Wu J; Hu J; Brès CS
    Opt Lett; 2022 Feb; 47(4):953-956. PubMed ID: 35167567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio.
    Gao H; Lei C; Chen M; Xing F; Chen H; Xie S
    Opt Express; 2013 Oct; 21(20):23107-15. PubMed ID: 24104226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.
    Steinmetz A; Jansen F; Stutzki F; Lehneis R; Limpert J; Tünnermann A
    Opt Lett; 2012 Jul; 37(13):2550-2. PubMed ID: 22743451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating.
    Sun R; Jin D; Tan F; Wei S; Hong C; Xu J; Liu J; Wang P
    Opt Express; 2016 Oct; 24(20):22806-22812. PubMed ID: 27828348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of nonlinear pulse propagation in a fiber Bragg grating written in a fiber amplifier.
    Shapira YP; Smulakovsky V; Horowitz M
    Opt Lett; 2016 Jan; 41(1):5-8. PubMed ID: 26696144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.
    Lehneis R; Steinmetz A; Limpert J; Tünnermann A
    Opt Lett; 2014 Oct; 39(20):5806-9. PubMed ID: 25361090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated femtosecond pulse generator on thin-film lithium niobate.
    Yu M; Barton Iii D; Cheng R; Reimer C; Kharel P; He L; Shao L; Zhu D; Hu Y; Grant HR; Johansson L; Okawachi Y; Gaeta AL; Zhang M; Lončar M
    Nature; 2022 Dec; 612(7939):252-258. PubMed ID: 36385531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nonideal chirped fiber Bragg grating characteristics on all-optical clock recovery based on the temporal Talbot effect.
    Oiwa M; Minami S; Tsuji K; Onodera N; Saruwatari M
    Appl Opt; 2009 Feb; 48(4):679-90. PubMed ID: 19183593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual chirped optical pulses from a phase-modulated laser.
    Kim Y; Kim DY
    Opt Express; 2007 Dec; 15(25):16357-66. PubMed ID: 19550926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Talbot array illuminators with phase-space optics.
    Testorf M
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):187-92. PubMed ID: 16478076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range.
    Tiess T; Rothhardt M; Jäger M; Bartelt H
    Appl Opt; 2013 Feb; 52(6):1161-7. PubMed ID: 23434986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time and high-precision interrogation of a linearly chirped fiber Bragg grating sensor array based on dispersive time delay and optical pulse compression.
    Wang B; Lu P; Mihailov SJ; Fan X; Yao J
    Opt Lett; 2019 Jul; 44(13):3246-3249. PubMed ID: 31259932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications.
    Wang S; Fan X; Wang B; Yang G; He Z
    Opt Express; 2017 May; 25(9):10224-10233. PubMed ID: 28468396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings.
    Azaña J; Muriel MA
    Opt Lett; 1999 Dec; 24(23):1672-4. PubMed ID: 18079898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.