These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28957327)

  • 1. Up For A Challenge (U4C): Stimulating innovation in breast cancer genetic epidemiology.
    Mechanic LE; Lindström S; Daily KM; Sieberts SK; Amos CI; Chen HS; Cox NJ; Dathe M; Feuer EJ; Guertin MJ; Hoffman J; Liu Y; Moore JH; Myers CL; Ritchie MD; Schildkraut J; Schumacher F; Witte JS; Wang W; Williams SM; ; ; Gillanders EM
    PLoS Genet; 2017 Sep; 13(9):e1006945. PubMed ID: 28957327
    [No Abstract]   [Full Text] [Related]  

  • 2. Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with breast cancer risk.
    Hoffman JD; Graff RE; Emami NC; Tai CG; Passarelli MN; Hu D; Huntsman S; Hadley D; Leong L; Majumdar A; Zaitlen N; Ziv E; Witte JS
    PLoS Genet; 2017 Mar; 13(3):e1006690. PubMed ID: 28362817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Epidemiology of Breast Cancer in Latin America.
    Zavala VA; Serrano-Gomez SJ; Dutil J; Fejerman L
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgery in the era of the 'omics revolution.
    Beggs AD; Dilworth MP
    Br J Surg; 2015 Jan; 102(2):e29-40. PubMed ID: 25627134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular epidemiology, and possible real-world applications in breast cancer.
    Ito H; Matsuo K
    Breast Cancer; 2016 Jan; 23(1):33-38. PubMed ID: 25862066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritizing candidate genetic modifiers of BRCA1 and BRCA2 using a combinatorial analysis of global expression and polymorphism association studies of breast cancer.
    Walker LC; Spurdle AB
    Methods Mol Biol; 2010; 653():23-34. PubMed ID: 20721735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association studies provoke debate and a new look at strategy.
    Tuma RS
    J Natl Cancer Inst; 2009 Aug; 101(15):1041-3. PubMed ID: 19638504
    [No Abstract]   [Full Text] [Related]  

  • 8. Surveying Breast Cancer's Genomic Landscape.
    Cancer Discov; 2016 Jul; 6(7):OF2. PubMed ID: 27225883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test of Hardy-Weinberg equilibrium in breast cancer case-control studies: an issue may influence the conclusions.
    Yu KD; Di GH; Fan L; Shao ZM
    Breast Cancer Res Treat; 2009 Oct; 117(3):675-7. PubMed ID: 19242790
    [No Abstract]   [Full Text] [Related]  

  • 10. Genome-based prediction of breast cancer risk in the general population: a modeling study based on meta-analyses of genetic associations.
    van Zitteren M; van der Net JB; Kundu S; Freedman AN; van Duijn CM; Janssens AC
    Cancer Epidemiol Biomarkers Prev; 2011 Jan; 20(1):9-22. PubMed ID: 21212067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association studies and the clinic: a focus on breast cancer.
    Véron A; Blein S; Cox DG
    Biomark Med; 2014; 8(2):287-96. PubMed ID: 24521025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Methylation in Breast Tumor from High-risk Women in the Breast Cancer Family Registry.
    Wu HC; Southey MC; Hibshoosh H; Santella RM; Terry MB
    Anticancer Res; 2017 Feb; 37(2):659-664. PubMed ID: 28179314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations.
    Chimusa ER; Mbiyavanga M; Mazandu GK; Mulder NJ
    Bioinformatics; 2016 Feb; 32(4):549-56. PubMed ID: 26508762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Testing of Exonic Variants and Breast Cancer Risk in the California Teachers Study.
    Lacson JCA; Ma H; Lee E; Neuhausen SL; Anton-Culver H; Reynolds P; Nelson DO; Ziogas A; Van Den Berg D; Deapen DM; Bernstein L; Schumacher FR
    Cancer Epidemiol Biomarkers Prev; 2017 Sep; 26(9):1462-1465. PubMed ID: 28864454
    [No Abstract]   [Full Text] [Related]  

  • 15. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer.
    Wendt C; Margolin S
    Acta Oncol; 2019 Feb; 58(2):135-146. PubMed ID: 30606073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PheWAS-Based Systems Genetics Methods for Anti-Breast Cancer Drug Discovery.
    Gao M; Quan Y; Zhou XH; Zhang HY
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between genetic ancestry and common breast cancer susceptibility variants in Colombian women.
    Torres D; Lorenzo Bermejo J; Garcia Mesa K; Gilbert M; Briceño I; Pohl-Zeidler S; González Silos R; Boekstegers F; Plass C; Hamann U
    Int J Cancer; 2019 May; 144(9):2181-2191. PubMed ID: 30485434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal trends in results availability from genome-wide association studies.
    Johnson AD; Leslie R; O'Donnell CJ
    PLoS Genet; 2011 Sep; 7(9):e1002269. PubMed ID: 21931563
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome-wide association study of genetic variants related to anthracycline-induced cardiotoxicity in early breast cancer.
    Park B; Sim SH; Lee KS; Kim HJ; Park IH
    Cancer Sci; 2020 Jul; 111(7):2579-2587. PubMed ID: 32378780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimal discovery procedure in multiple significance testing: an empirical Bayes approach.
    Noma H; Matsui S
    Stat Med; 2012 Jan; 31(2):165-76. PubMed ID: 21969277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.