These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28957458)

  • 1. Omics approaches to study gene regulatory networks for development in echinoderms.
    Lowe EK; Cuomo C; Arnone MI
    Brief Funct Genomics; 2017 Sep; 16(5):299-308. PubMed ID: 28957458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm.
    Andrikou C; Pai CY; Su YH; Arnone MI
    Elife; 2015 Jul; 4():. PubMed ID: 26218224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
    Hinman VF; Yankura KA; McCauley BS
    Biochim Biophys Acta; 2009 Apr; 1789(4):326-32. PubMed ID: 19284985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echinoderm systems for gene regulatory studies in evolution and development.
    Arnone MI; Andrikou C; Annunziata R
    Curr Opin Genet Dev; 2016 Aug; 39():129-137. PubMed ID: 27389072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echinoderm development and evolution in the post-genomic era.
    Cary GA; Hinman VF
    Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms.
    Buckley KM; Dong P; Cameron RA; Rast JP
    Brief Funct Genomics; 2018 Sep; 17(5):362-371. PubMed ID: 29045542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development.
    Cary GA; Cheatle Jarvela AM; Francolini RD; Hinman VF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5854-5861. PubMed ID: 28584099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    Ettensohn CA
    Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis.
    Alizad-Rahvar AR; Sadeghi M
    PLoS One; 2018; 13(11):e0206976. PubMed ID: 30458000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic resources for the study of echinoderm development and evolution.
    Cary GA; Cameron RA; Hinman VF
    Methods Cell Biol; 2019; 151():65-88. PubMed ID: 30948032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for the experimental and computational analysis of gene regulatory networks in sea urchins.
    Peter IS
    Methods Cell Biol; 2019; 151():89-113. PubMed ID: 30948033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity.
    Lowe EK; Cuomo C; Voronov D; Arnone MI
    Methods Cell Biol; 2019; 151():115-126. PubMed ID: 30948003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches to understand transcription regulation in development.
    van der Sande M; Frölich S; van Heeringen SJ
    Biochem Soc Trans; 2023 Feb; 51(1):1-12. PubMed ID: 36695505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.
    Chen BS; Li CW
    BMC Syst Biol; 2016 Feb; 10():18. PubMed ID: 26897165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.