These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 28957501)

  • 1. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations.
    Gorter FA; Derks MFL; van den Heuvel J; Aarts MGM; Zwaan BJ; de Ridder D; de Visser JAGM
    Mol Biol Evol; 2017 Oct; 34(10):2613-2626. PubMed ID: 28957501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration.
    Gorter FA; Aarts MM; Zwaan BJ; de Visser JA
    Am Nat; 2016 Jan; 187(1):110-9. PubMed ID: 27277407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
    Gorter FA; Aarts MGM; Zwaan BJ; de Visser JAGM
    Genetics; 2018 Jan; 208(1):307-322. PubMed ID: 29141909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombination Alters the Dynamics of Adaptation on Standing Variation in Laboratory Yeast Populations.
    Kosheleva K; Desai MM
    Mol Biol Evol; 2018 Jan; 35(1):180-201. PubMed ID: 29069452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change.
    Morley VJ; Turner PE
    Evolution; 2017 Apr; 71(4):872-883. PubMed ID: 28121018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
    Sellis D; Kvitek DJ; Dunn B; Sherlock G; Petrov DA
    Genetics; 2016 Jul; 203(3):1401-13. PubMed ID: 27194750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment.
    Boyer S; Hérissant L; Sherlock G
    PLoS Genet; 2021 Jan; 17(1):e1009314. PubMed ID: 33493203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
    Jerison ER; Desai MM
    Curr Opin Genet Dev; 2015 Dec; 35():33-9. PubMed ID: 26370471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genomic footprint of climate adaptation in Chironomus riparius.
    Waldvogel AM; Wieser A; Schell T; Patel S; Schmidt H; Hankeln T; Feldmeyer B; Pfenninger M
    Mol Ecol; 2018 Mar; 27(6):1439-1456. PubMed ID: 29473242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source.
    Scott AL; Richmond PA; Dowell RD; Selmecki AM
    Mol Biol Evol; 2017 Oct; 34(10):2690-2703. PubMed ID: 28957510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.
    Fisher KJ; Buskirk SW; Vignogna RC; Marad DA; Lang GI
    PLoS Genet; 2018 May; 14(5):e1007396. PubMed ID: 29799840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex speeds adaptation by altering the dynamics of molecular evolution.
    McDonald MJ; Rice DP; Desai MM
    Nature; 2016 Mar; 531(7593):233-6. PubMed ID: 26909573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration.
    Bell G; Gonzalez A
    Science; 2011 Jun; 332(6035):1327-30. PubMed ID: 21659606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist Tetrahymena thermophila.
    Moerman F; Fronhofer EA; Altermatt F; Wagner A
    J Anim Ecol; 2022 Jun; 91(6):1088-1103. PubMed ID: 34582573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2013 Nov; 9(11):e1003972. PubMed ID: 24278038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.
    Payen C; Di Rienzi SC; Ong GT; Pogachar JL; Sanchez JC; Sunshine AB; Raghuraman MK; Brewer BJ; Dunham MJ
    G3 (Bethesda); 2014 Mar; 4(3):399-409. PubMed ID: 24368781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers.
    Franch-Gras L; Hahn C; García-Roger EM; Carmona MJ; Serra M; Gómez A
    Sci Rep; 2018 Oct; 8(1):16051. PubMed ID: 30375419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions.
    Li Y; Venkataram S; Agarwala A; Dunn B; Petrov DA; Sherlock G; Fisher DS
    Curr Biol; 2018 Feb; 28(4):515-525.e6. PubMed ID: 29429618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.