BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28957653)

  • 41. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
    Janky R; Verfaillie A; Imrichová H; Van de Sande B; Standaert L; Christiaens V; Hulselmans G; Herten K; Naval Sanchez M; Potier D; Svetlichnyy D; Kalender Atak Z; Fiers M; Marine JC; Aerts S
    PLoS Comput Biol; 2014 Jul; 10(7):e1003731. PubMed ID: 25058159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana.
    Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K
    Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors.
    Starick SR; Ibn-Salem J; Jurk M; Hernandez C; Love MI; Chung HR; Vingron M; Thomas-Chollier M; Meijsing SH
    Genome Res; 2015 Jun; 25(6):825-35. PubMed ID: 25720775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TICA: Transcriptional Interaction and Coregulation Analyzer.
    Perna S; Pinoli P; Ceri S; Wong L
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):342-353. PubMed ID: 30578913
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TFregulomeR reveals transcription factors' context-specific features and functions.
    Lin QXX; Thieffry D; Jha S; Benoukraf T
    Nucleic Acids Res; 2020 Jan; 48(2):e10. PubMed ID: 31754708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PRISM offers a comprehensive genomic approach to transcription factor function prediction.
    Wenger AM; Clarke SL; Guturu H; Chen J; Schaar BT; McLean CY; Bejerano G
    Genome Res; 2013 May; 23(5):889-904. PubMed ID: 23382538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identifying combinatorial regulation of transcription factors and binding motifs.
    Kato M; Hata N; Banerjee N; Futcher B; Zhang MQ
    Genome Biol; 2004; 5(8):R56. PubMed ID: 15287978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks.
    Pavesi G
    Adv Biochem Eng Biotechnol; 2017; 160():1-14. PubMed ID: 28070596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data.
    Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Benchmark and integration of resources for the estimation of human transcription factor activities.
    Garcia-Alonso L; Holland CH; Ibrahim MM; Turei D; Saez-Rodriguez J
    Genome Res; 2019 Aug; 29(8):1363-1375. PubMed ID: 31340985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.
    Zhou KR; Liu S; Sun WJ; Zheng LL; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2017 Jan; 45(D1):D43-D50. PubMed ID: 27924033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A universal framework for detecting
    Biswas A; Narlikar L
    Genome Res; 2021 Sep; 31(9):1646-1662. PubMed ID: 34285090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.