These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 28957654)
1. Folding Membrane Proteins by Deep Transfer Learning. Wang S; Li Z; Yu Y; Xu J Cell Syst; 2017 Sep; 5(3):202-211.e3. PubMed ID: 28957654 [TBL] [Abstract][Full Text] [Related]
2. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
3. PredMP: a web server for de novo prediction and visualization of membrane proteins. Wang S; Fei S; Wang Z; Li Y; Xu J; Zhao F; Gao X Bioinformatics; 2019 Feb; 35(4):691-693. PubMed ID: 30084960 [TBL] [Abstract][Full Text] [Related]
4. Challenges of Protein-Protein Docking of the Membrane Proteins. Kiani YS; Jabeen I Methods Mol Biol; 2024; 2780():203-255. PubMed ID: 38987471 [TBL] [Abstract][Full Text] [Related]
5. Predicting membrane proteins and their types by extracting various sequence features into Chou's general PseAAC. Butt AH; Rasool N; Khan YD Mol Biol Rep; 2018 Dec; 45(6):2295-2306. PubMed ID: 30238411 [TBL] [Abstract][Full Text] [Related]
6. Analysis of distance-based protein structure prediction by deep learning in CASP13. Xu J; Wang S Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916 [TBL] [Abstract][Full Text] [Related]
7. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Hou J; Wu T; Cao R; Cheng J Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027 [TBL] [Abstract][Full Text] [Related]
8. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. Roche R; Bhattacharya S; Bhattacharya D PLoS Comput Biol; 2021 Feb; 17(2):e1008753. PubMed ID: 33621244 [TBL] [Abstract][Full Text] [Related]
9. Distance-based protein folding powered by deep learning. Xu J Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16856-16865. PubMed ID: 31399549 [TBL] [Abstract][Full Text] [Related]
10. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. Adhikari B; Hou J; Cheng J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157 [TBL] [Abstract][Full Text] [Related]
11. Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction. Yang P; Zheng W; Ning K; Zhang Y Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34873061 [TBL] [Abstract][Full Text] [Related]
13. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure. Ji S; Oruç T; Mead L; Rehman MF; Thomas CM; Butterworth S; Winn PJ PLoS One; 2019; 14(1):e0205214. PubMed ID: 30620738 [TBL] [Abstract][Full Text] [Related]
14. CONFOLD: Residue-residue contact-guided ab initio protein folding. Adhikari B; Bhattacharya D; Cao R; Cheng J Proteins; 2015 Aug; 83(8):1436-49. PubMed ID: 25974172 [TBL] [Abstract][Full Text] [Related]
15. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks. Sun J; Frishman D J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598 [TBL] [Abstract][Full Text] [Related]
16. Analysis of deep learning methods for blind protein contact prediction in CASP12. Wang S; Sun S; Xu J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538 [TBL] [Abstract][Full Text] [Related]
17. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976 [TBL] [Abstract][Full Text] [Related]
18. The whole is greater than its parts: ensembling improves protein contact prediction. Billings WM; Morris CJ; Della Corte D Sci Rep; 2021 Apr; 11(1):8039. PubMed ID: 33850214 [TBL] [Abstract][Full Text] [Related]
19. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Zhang C; Mortuza SM; He B; Wang Y; Zhang Y Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning contact-map guided protein structure prediction in CASP13. Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]