These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 28957759)

  • 1. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems.
    Rahman MM; Lesch MF; Horrey WJ; Strawderman L
    Accid Anal Prev; 2017 Nov; 108():361-373. PubMed ID: 28957759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling driver acceptance of driver support systems.
    Rahman MM; Strawderman L; Lesch MF; Horrey WJ; Babski-Reeves K; Garrison T
    Accid Anal Prev; 2018 Dec; 121():134-147. PubMed ID: 30245477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.
    Eichelberger AH; McCartt AT
    J Safety Res; 2016 Feb; 56():67-73. PubMed ID: 26875167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing driver acceptance of technology that reduces mobile phone use while driving: The case of mobile phone applications.
    Oviedo-Trespalacios O; Briant O; Kaye SA; King M
    Accid Anal Prev; 2020 Feb; 135():105348. PubMed ID: 31790969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced driver assistance systems for teen drivers: A national survey of teen and parent perceptions.
    Hannan C; Palumbo AJ; Fisher Thiel MC; Weiss E; Seacrist T
    Traffic Inj Prev; 2018; 19(sup2):S84-S90. PubMed ID: 30335514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver trust in five driver assistance technologies following real-world use in four production vehicles.
    Kidd DG; Cicchino JB; Reagan IJ; Kerfoot LB
    Traffic Inj Prev; 2017 May; 18(sup1):S44-S50. PubMed ID: 28339302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced driver assistance systems for teen drivers: Teen and parent impressions, perceived need, and intervention preferences.
    Weiss E; Fisher Thiel M; Sultana N; Hannan C; Seacrist T
    Traffic Inj Prev; 2018 Feb; 19(sup1):S120-S124. PubMed ID: 29584476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychosocial factors associated with intended use of automated vehicles: A simulated driving study.
    Buckley L; Kaye SA; Pradhan AK
    Accid Anal Prev; 2018 Jun; 115():202-208. PubMed ID: 29631216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volvo drivers' experiences with advanced crash avoidance and related technologies.
    Eichelberger AH; McCartt AT
    Traffic Inj Prev; 2014; 15(2):187-95. PubMed ID: 24345022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceived safety benefits, concerns, and utility of advanced driver assistance systems among owners of ADAS-equipped vehicles.
    Pradhan AK; Pulver E; Zakrajsek J; Bao S; Molnar L
    Traffic Inj Prev; 2018; 19(sup2):S135-S137. PubMed ID: 30841806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System.
    Voinea GD; Postelnicu CC; Duguleana M; Mogan GL; Socianu R
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32998252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically-informed investigation guided by the TPB and UTAUT.
    Kaye SA; Lewis I; Forward S; Delhomme P
    Accid Anal Prev; 2020 Mar; 137():105441. PubMed ID: 32007779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of driver physical factors leading to unintentional lane departure crashes.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2017 Jul; 18(5):481-487. PubMed ID: 27740863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injury mitigation estimates for an intersection driver assistance system in straight crossing path crashes in the United States.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2017 May; 18(sup1):S9-S17. PubMed ID: 28323447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field effectiveness evaluation of advanced driver assistance systems.
    Spicer R; Vahabaghaie A; Bahouth G; Drees L; Martinez von Bülow R; Baur P
    Traffic Inj Prev; 2018; 19(sup2):S91-S95. PubMed ID: 30543454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.
    Thompson JP; Mackenzie JRR; Dutschke JK; Baldock MRJ; Raftery SJ; Wall J
    Accid Anal Prev; 2018 Jun; 115():34-40. PubMed ID: 29544135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.