BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28958789)

  • 1. Expression analyzes of early factors in midbrain differentiation programs.
    Mesman S; Krüse SJ; Smidt MP
    Gene Expr Patterns; 2018 Jan; 27():8-15. PubMed ID: 28958789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesodiencephalic dopaminergic neuronal differentiation does not involve GLI2A-mediated SHH-signaling and is under the direct influence of canonical WNT signaling.
    Mesman S; von Oerthel L; Smidt MP
    PLoS One; 2014; 9(5):e97926. PubMed ID: 24865218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of the Midbrain Dopaminergic Neuronal Identity.
    Mesman S; Smidt MP
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32629812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specification of dopaminergic subsets involves interplay of En1 and Pitx3.
    Veenvliet JV; Dos Santos MT; Kouwenhoven WM; von Oerthel L; Lim JL; van der Linden AJ; Koerkamp MJ; Holstege FC; Smidt MP
    Development; 2013 Aug; 140(16):3373-84. PubMed ID: 23863478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitx3 and En1 determine the size and molecular programming of the dopaminergic neuronal pool.
    Kouwenhoven WM; von Oerthel L; Smidt MP
    PLoS One; 2017; 12(8):e0182421. PubMed ID: 28800615
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Mesman S; Smidt MP
    Front Mol Neurosci; 2017; 10():353. PubMed ID: 29163030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.
    Fukusumi Y; Meier F; Götz S; Matheus F; Irmler M; Beckervordersandforth R; Faus-Kessler T; Minina E; Rauser B; Zhang J; Arenas E; Andersson E; Niehrs C; Beckers J; Simeone A; Wurst W; Prakash N
    J Neurosci; 2015 Sep; 35(39):13385-401. PubMed ID: 26424886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional determination of the differentiation potential of ventral mesencephalic neural precursor cells during dopaminergic neurogenesis.
    Guerrero-Flores G; Bastidas-Ponce A; Collazo-Navarrete O; Guerra-Crespo M; Covarrubias L
    Dev Biol; 2017 Sep; 429(1):56-70. PubMed ID: 28733161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between Oc-1 and Lmx1a promotes ventral midbrain dopamine neural stem cells differentiation into dopamine neurons.
    Yuan J; Lei ZN; Wang X; Deng YJ; Chen DB
    Brain Res; 2015 May; 1608():40-50. PubMed ID: 25747864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development.
    Klafke R; Prem Anand AA; Wurst W; Prakash N; Wizenmann A
    Development; 2016 Feb; 143(4):691-702. PubMed ID: 26755703
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Mesman S; van Hooft JA; Smidt MP
    Front Mol Neurosci; 2016; 9():166. PubMed ID: 28133444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.
    Metzakopian E; Bouhali K; Alvarez-Saavedra M; Whitsett JA; Picketts DJ; Ang SL
    Development; 2015 Apr; 142(7):1315-24. PubMed ID: 25804738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Otx2 Requires Lmx1b to Control the Development of Mesodiencephalic Dopaminergic Neurons.
    Sherf O; Nashelsky Zolotov L; Liser K; Tilleman H; Jovanovic VM; Zega K; Jukic MM; Brodski C
    PLoS One; 2015; 10(10):e0139697. PubMed ID: 26444681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain.
    Lahti L; Peltopuro P; Piepponen TP; Partanen J
    Development; 2012 Mar; 139(5):894-905. PubMed ID: 22278924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons.
    Zhao S; Maxwell S; Jimenez-Beristain A; Vives J; Kuehner E; Zhao J; O'Brien C; de Felipe C; Semina E; Li M
    Eur J Neurosci; 2004 Mar; 19(5):1133-40. PubMed ID: 15016072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.
    Gennet N; Tamburini C; Nan X; Li M
    Sci Rep; 2016 Sep; 6():32488. PubMed ID: 27580818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons.
    Smits SM; von Oerthel L; Hoekstra EJ; Burbach JP; Smidt MP
    PLoS One; 2013; 8(10):e76037. PubMed ID: 24116087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons.
    Jacobs FM; Veenvliet JV; Almirza WH; Hoekstra EJ; von Oerthel L; van der Linden AJ; Neijts R; Koerkamp MG; van Leenen D; Holstege FC; Burbach JP; Smidt MP
    Development; 2011 Dec; 138(23):5213-22. PubMed ID: 22069189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phox2b influences the development of a caudal dopaminergic subset.
    Hoekstra EJ; von Oerthel L; van der Linden AJ; Smidt MP
    PLoS One; 2012; 7(12):e52118. PubMed ID: 23251691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency.
    Jacobs FM; Smits SM; Noorlander CW; von Oerthel L; van der Linden AJ; Burbach JP; Smidt MP
    Development; 2007 Jul; 134(14):2673-84. PubMed ID: 17592014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.