These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28958910)

  • 1. P3 event-related brain potential reflects allocation and use of central processing capacity in language production.
    Shitova N; Roelofs A; Coughler C; Schriefers H
    Neuropsychologia; 2017 Nov; 106():138-145. PubMed ID: 28958910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The P600 as a correlate of ventral attention network reorientation.
    Sassenhagen J; Bornkessel-Schlesewsky I
    Cortex; 2015 May; 66():A3-A20. PubMed ID: 25791606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lateralized readiness potential and P300 of stimulus-set switching.
    Hsieh S
    Int J Psychophysiol; 2006 Jun; 60(3):284-91. PubMed ID: 16157405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targets and non-targets in the aging brain: A go/nogo event-related potential study.
    Vallesi A
    Neurosci Lett; 2011 Jan; 487(3):313-7. PubMed ID: 20974222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P3 latency shifts in the attentional blink: further evidence for second target processing postponement.
    Sessa P; Luria R; Verleger R; Dell'Acqua R
    Brain Res; 2007 Mar; 1137(1):131-9. PubMed ID: 17258178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distractor P3 is associated with attentional capture by stimulus deviance.
    Sawaki R; Katayama J
    Clin Neurophysiol; 2008 Jun; 119(6):1300-9. PubMed ID: 18411071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioural and electrophysiological measures of task switching during single and mixed-task conditions.
    Goffaux P; Phillips NA; Sinai M; Pushkar D
    Biol Psychol; 2006 Jun; 72(3):278-90. PubMed ID: 16413655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P3 produced by auditory stimuli presented in a passive and active condition: modulation by visual stimuli.
    Wronka E; Kuniecki M; Kaiser J; Coenen AML
    Acta Neurobiol Exp (Wars); 2007; 67(2):155-64. PubMed ID: 17691223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of switch cost: task set configuration or carry-over effect?
    Hsieh S; Liu LC
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):165-75. PubMed ID: 15653291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm.
    Hillman CH; Kramer AF; Belopolsky AV; Smith DP
    Int J Psychophysiol; 2006 Jan; 59(1):30-9. PubMed ID: 16413382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociating love-related attention from task-related attention: an event-related potential oddball study.
    Langeslag SJ; Franken IH; Van Strien JW
    Neurosci Lett; 2008 Feb; 431(3):236-40. PubMed ID: 18162320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-related potential correlates of task switching and switch costs.
    Kieffaber PD; Hetrick WP
    Psychophysiology; 2005 Jan; 42(1):56-71. PubMed ID: 15720581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regular physical activity improves executive function during task switching in young adults.
    Kamijo K; Takeda Y
    Int J Psychophysiol; 2010 Mar; 75(3):304-11. PubMed ID: 20079771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of single-word and adjective-noun phrase production using event-related brain potentials.
    Lange VM; Perret C; Laganaro M
    Cortex; 2015 Jun; 67():15-29. PubMed ID: 25863469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To P(E) or not to P(E): a P3-like ERP component reflecting the processing of response errors.
    Ridderinkhof KR; Ramautar JR; Wijnen JG
    Psychophysiology; 2009 May; 46(3):531-8. PubMed ID: 19226310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severity of AD/HD symptoms and efficiency of attentional resource allocation.
    Sawaki R; Katayama J
    Neurosci Lett; 2006 Oct; 407(1):86-90. PubMed ID: 16949203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.